Skip to main content
Log in

Testing of PEM fuel cell performance by electrochemical impedance spectroscopy: Optimum condition for low relative humidification cathode

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy (EIS) was used to investigate the influence of several parameters on the performance of PEMFC. The applied frequency was in the range of 50 mHz–10 kHz. The experiment was designed by using a 2k factorial design to identify the effects of various parameters including cell voltage, flow rates of gaseous fuels and cell temperature at the saturated humidification in anode and 60% relative humidity cathode. The results indicated that the cell temperature, cell voltage and interactions of cell voltage, flow rate of H2 and O2 had a significant effect on the cell performance. In addition, the flow rate of O2 had a strong effect on the ohmic resistance and the charge transfer resistance in the system. Models describing the relationship between previous parameters and ohmic resistance, charge transfer resistance and capacitance were also developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shinichi, K. Jumbom and S. Supramaniam, Electrochimica Acta, 42(10), 1587 (1997).

    Article  Google Scholar 

  2. M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg and H. Tributsh, J. Electroanal. Chem., 517(2), 85 (2001).

    Article  CAS  Google Scholar 

  3. W. Hawut, M. Hunsom and K. Pruksathorn, Korean J. Chem. Eng., 23, 555 (2006).

    Article  CAS  Google Scholar 

  4. V. A. Paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer and E. R. Gonzalez, Electrochim. Acta., 43, 3761 (1998).

    Article  CAS  Google Scholar 

  5. H. Mali, L. A. Dunyushkina and S. B. Adler, Korean J. Chem. Eng., 23, 720 (2006).

    Article  Google Scholar 

  6. M. J. Jorgensen, P. Primdahl and M. Mogensen, Electrochimica Acta, 44, 4195 (1999).

    Article  CAS  Google Scholar 

  7. H. K., Lee, Mat. Chem. Phys., 77, 639 (2002).

    Article  Google Scholar 

  8. C. M. Lai, J. C. Lin, K. L. Hsueh, C. P. Hwang, K. C. Tsay, L. Tsai and Y. M. Peng, Int. J. Hydrogen Energ., Article in Press.

  9. C. Y. Du, T. S. Zhao and C. Xu, J. Power Sources, 167(2), 265 (2007).

    Article  CAS  Google Scholar 

  10. C.Y. Du, T. S. Zhao and W.W. Yang, Electrochimica Acta, 52(16), 5266 (2007).

    Article  CAS  Google Scholar 

  11. N. Wagner, W. Schnumberger, B. Muller and M. Lang, Electrochim. Acta., 43(24), 3785 (1998).

    Article  CAS  Google Scholar 

  12. M. Eikerling and A. A. Kornyshev, J. Electroanal. Chem., 475, 107 (1999).

    Article  CAS  Google Scholar 

  13. T. Romero-Castañón, L.G. Arriaga and U. Cano-Castillo, J. Power Sources, 118(1–2), 179 (2003).

    Article  Google Scholar 

  14. E. B. Easton, P. G. Pickup, Electrochim. Acta., 50, 2469 (2005).

    Article  CAS  Google Scholar 

  15. T. J. P. Freire and E. R. Gonzalez, J. Electroanal. Chem., 503, 57 (2000).

    Article  Google Scholar 

  16. B. Andreaus, A. J. McEvoy and G.G. Scherer, Electrochim. Acta., 47(13–14), 2223 (2002).

    Article  CAS  Google Scholar 

  17. M. Ciureanu and R. Roberge, J. Phy. Chem. B, 105(17), 3531 (2001).

    Article  CAS  Google Scholar 

  18. T. E. Springer, T. A. Zawodzinski, M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc., 143(2), 587 (1996).

    Article  CAS  Google Scholar 

  19. N. Wagner and M. Schulze, Electrochim. Acta., 48, 3899 (2003).

    Article  CAS  Google Scholar 

  20. C. A. Schiller, F. Richter, E. Gulzow and N. Wagner, Phys. Chem. Phys., 3, 2113 (2001).

    Article  CAS  Google Scholar 

  21. D. Yang, J. Ma, L. Xu, M. Wu and H. Wang, Electrochim. Acta., 51, 4039 (2006).

    Article  CAS  Google Scholar 

  22. D. C. Montgomery, Design and analysis of experiments, 5th ed. John Wiley & Sons Ltd., New York (2001).

    Google Scholar 

  23. F. Barbie, PEM fuel cells, Theory and practice, Elsevier Academic Press, USA (2005).

    Google Scholar 

  24. R. O’Hayre, S.W. Cha and W. Colella, Fuel cell fundamentals, John Wiley & Sons, New York (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mali Hunsom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattamarat, K., Hunsom, M. Testing of PEM fuel cell performance by electrochemical impedance spectroscopy: Optimum condition for low relative humidification cathode. Korean J. Chem. Eng. 25, 245–252 (2008). https://doi.org/10.1007/s11814-008-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0044-z

Key words

Navigation