Skip to main content

Numerical Investigation on the Influence of Reactant Gas Concentration on the Performance of a PEM Fuel Cell

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Advances in Energy Research

Abstract

The present study numerically investigates the influence of reactant gas concentration on the performance characteristics of a proton exchange membrane (PEM) fuel cell. The effect of reactant gas configurations of the electrodes is discussed in terms of performance characteristics viz. cathode water concentration, current density, power density, and overpotential. Our study reveals that cathode water concentration, current density, and subsequently power density has a linear relationship with the concentration of reactant gases. It is found that the cell performance becomes superior with an increase in the concentration of reactant gases. Furthermore, overpotential is observed to be minimum at higher concentrations of reactant gases. The findings of this study bear utility towards designing an efficient PEM fuel cell system that can deliver a higher power density, current density with minimal overpotential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

u :

Velocity, m/s

i e :

Ionic current density, A/m2

i s :

Electrical current density, A/m2

k p :

Permeability, m2

\(\mu\) :

Viscosity, kg/m s

D ij :

Diffusion coefficient of species i and j

M :

Molecular weight

w i :

Mass fraction of species i

s :

Liquid saturation

S T :

Total heat, J

p :

Pressure, Pa

\(c_{p}\) :

Specific heat capacity, J/kg/K

ε :

Porosity

σ :

Electron/ion conductivity

T :

Temperature, K

ρ :

Density of material, kg/m3

\(\omega\) :

Mass fraction

k :

Conductivity, S/m

\(\phi\) s :

Solid-phase potential, V

\(\phi\) l :

Electrolyte phase potential, V

x j :

Molar fraction of species j.

g :

Gas

T :

Thermal

eff:

Effective.

i :

Species

g :

Gas

l :

Liquid

s :

Solid.

References

  1. Benziger, J., Kimball, E., Mejia-Ariza, R., Kevrekidis, I.: Oxygen mass transport limitations at the cathode of polymer electrolyte membrane fuel cells. Am Inst Chem Eng J 57(9), 2505–2517 (2011)

    Article  Google Scholar 

  2. Martins, F., Felgueiras, C., Smitková, M.: Fossil fuel energy consumption in European countries. Energy Procedia 153, 107–111 (2018)

    Article  Google Scholar 

  3. Edwards, P.P., Kuznetsov, V.L., David, W.I.F., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36, 4356–4362 (2008)

    Article  Google Scholar 

  4. Zhang, J.: PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, 1st edn. Springer Science and Business Media, Canada (2008)

    Google Scholar 

  5. Reddy, T.B., Linden, D.: Linden’s handbook of batteries, 4th edn. McGraw-Hill Companies, New York (2011)

    Google Scholar 

  6. Raistrick, I.D.: Modified gas diffusion electrode for proton exchange membrane fuel cells. In: Proceedings of the Symposium on Diaphragms, Separators, and Ion-Exchange Membranes, Vol. 86, p. 172 (1986)

    Google Scholar 

  7. Toghyani, S., Moradi Nafchi, F., Afshari, E., Hasanpour, K., Baniasadi, E., Atyabi, S.A.: Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int. J. Hydrogen Energy 43, 4534–4545 (2018)

    Article  Google Scholar 

  8. Anyanwu, I.S., Hou, Y., Xi, F., Wang, X., Yin, Y., Du, Q., Jiao, K.: Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. Int. J. Hydrogen Energy 44, 13807–13819 (2019)

    Article  Google Scholar 

  9. Kang, D.G., Shin, D.K., Kim, S., Kim, M.S.: Experimental study on the performance improvement of polymer electrolyte membrane fuel cell with dual air supply. Renew Energy 141, 669–677 (2019)

    Article  Google Scholar 

  10. Dhahad, H.A., Alawee, W.H., Hassan, A.K.: Experimental study of the effect of flow field design to PEM fuel cells performance. Renew Energy Focus 30, 71–77 (2019)

    Article  Google Scholar 

  11. Søndergaard, S., Cleemann, L.N., Jensen, J.O., Bjerrum, N.J.: Influence of oxygen on the cathode in HT-PEM fuel cells. Int. J. Hydrogen Energy 44, 20379–20388 (2019)

    Article  Google Scholar 

  12. Seyhan, M., Akansu, Y.E.: The effect of a novel spark-plug plasma synthetic jet actuator on the performance of a PEM fuel cell. Int. J. Heat Mass Transf. 140, 147–151 (2019)

    Article  Google Scholar 

  13. Yin, L., Li, Q., Chen, W., Wang, T., Liu, H.: Experimental analysis of optimal performance for a 5 kW PEMFC system. Int. J. Hydrogen Energy 44, 5499–5506 (2019)

    Article  Google Scholar 

  14. Ubong, E.U., Shi, Z., Wang, X.: Three-Dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell. J. Electrochem. Soc. 156(10), B1276–B1282 (2009)

    Article  Google Scholar 

  15. Carrere, P., Prat, M.: Liquid water in cathode gas diffusion layers of PEM fuel cells: Identification of various pore filling regimes from pore network simulations. Int. J. Heat Mass Transf. 129, 1043–1056 (2019)

    Article  Google Scholar 

  16. Sezgin, B., Caglayan, D.G., Devrim, Y., Steenberg, T., Eroglu, I.: Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics. Int. J. Hydrogen Energy 41, 10001–10009 (2016)

    Article  Google Scholar 

  17. Srinivasan, S.: Fuel cells: from fundamentals to applications. Springer Science and Business media, New York (2006)

    Google Scholar 

  18. Bree, L.C., Schiekel, T., Mitsos, A.: Overpotentials in water electrolysis : simulative comparison of PEM-cell and GAP-cell performance. In: Kiss, A.A., Zondervan, E., Lakerveld, R., Ozkan, L. (eds.) 29th Eur Symposium Computer Aided Chemical Engineering, pp. 1–6. Elsevier, Eindhoven (2019)

    Google Scholar 

  19. Tsujiguchi, T., Matsuoka, F., Hokari, Y., Osaka, Y., Kodama, A.: Overpotential analysis of the direct formic acid fuel cell. Electrochim. Acta 197, 32–38 (2018)

    Article  Google Scholar 

  20. Kanchan, B.K., Randive, P., Pati, S.: Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell. Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.05.218

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitambar R. Randive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanchan, B.K., Randive, P.R., Pati, S. (2021). Numerical Investigation on the Influence of Reactant Gas Concentration on the Performance of a PEM Fuel Cell. In: Bose, M., Modi, A. (eds) Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5955-6_159

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5955-6_159

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5954-9

  • Online ISBN: 978-981-15-5955-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics