Skip to main content

Electrochemical Impedance Parameter Extraction for Online Control of Reformed Methanol High Temperature PEM Fuel Cells

  • Conference paper
  • First Online:
ELECTRIMACS 2019

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 615))

  • 1555 Accesses

Abstract

This work focuses towards online control strategy for detecting fuel and oxidant starvation and predicting an optimal stoichiometry for operation under different fuel compositions using the electrochemical impedance spectroscopy (EIS) parameter extraction method. The tests involve three fuel compositions, namely dry hydrogen, dry reformate (, , and ) and wet reformate (, , and ). The characterization of anode and cathode stoichiometry (both low and high) is carried out with each fuel composition by measuring electrochemical impedance spectroscopy (EIS) and current–voltage (IV ) curves. The results suggest positive effects of humidified gas on the fuel cell stack performance. The changes in the mass transport resistance due to excess gas or gas starvation both on the anode and cathode could only be deduced using the EIS method. Online EIS measurement seems useful in deducing the optimal stoichiometry as the IV curves are unable to show the changes in the mass transport. Thus, to operate the fuel cell stack under an optimal fuel and oxidant utilization, an online EIS with parameter extraction algorithm can be helpful. This would ensure a better fuel and oxidant utilization and improve the system efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Schmidt, Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Trans. 1(8), 19–31 (2006). https://doi.org/10.1149/1.2214541. http://ecst.ecsdl.org/content/1/8/19.abstract

  2. A.R. Korsgaard, M.P. Nielsen, S.R.K. Kæ r, Part two: control of a novel HTPEM-based micro combined heat and power fuel cell system. Int. J. Hydrogen Energy 33(7), 1921–1931 (2008). http://www.sciencedirect.com/science/article/pii/S036031990800058X

  3. F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J. Power Sources 160(1), 27–36 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.047. http://www.sciencedirect.com/science/article/pii/S0378775306001248

  4. S.S. Araya, F. Zhou, V. Liso, S.L. Sahlin, J.R. Vang, S. Thomas, X. Gao, C. Jeppesen, S.K. Kær, A comprehensive review of PBI-based high temperature PEM fuel cells (2016). https://doi.org/10.1016/j.ijhydene.2016.09.024

  5. F. Zhou, S.J. Andreasen, S.K. Kær, D. Yu, Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. Int. J. Hydrogen Energy 40(6), 2833–2839 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.082. http://www.sciencedirect.com/science/article/pii/S036031991403479X

  6. S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola, R. Marchesi, On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid. Int. J. Hydrogen Energy 37(19) (2012). https://doi.org/10.1016/j.ijhydene.2012.07.032. http://linkinghub.elsevier.com/retrieve/pii/S0360319912016096

  7. B. Najafi, A. Haghighat Mamaghani, A. Baricci, F. Rinaldi, A. Casalegno, Mathematical modelling and parametric study on a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant. Int. J. Hydrogen Energy 40(3), 1569–1583 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.093. http://www.sciencedirect.com/science/article/pii/S0360319914032273

  8. S.L. Sahlin., Characterization and Modeling of a Methanol Reforming Fuel Cell System, Aalborg Universitetsforlag (Ph.D.-serien for Det Teknisk-Naturvidenskabelige Fakultet, Aalborg Universitet), 2016. https://doi.org/10.5278/vbn.phd.engsci.00059

  9. F. Zhou, S.J. Andreasen, S.K. Kær, J.O. Park, Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: Influence of anode humidification and carbon dioxide. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.09.056. http://www.sciencedirect.com/science/article/pii/S0360319915023460

  10. A.D. Modestov, M.R. Tarasevich, V. Filimonov, E.S. Davydova, CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole–H3PO4 membrane. Electrochim. Acta 55(20), 6073–6080 (2010). https://doi.org/10.1016/j.electacta.2010.05.068. http://www.sciencedirect.com/science/article/pii/S001346861000770X, http://linkinghub.elsevier.com/retrieve/pii/S001346861000770X

  11. X. Yuan, H. Wang, J. Colin Sun, J. Zhang, AC impedance technique in PEM fuel cell diagnosis—a review. Int. J. Hydrogen Energy 32(17), 4365–4380 (2007). https://doi.org/http://dx.doi.org/10.1016/j.ijhydene.2007.05.036. http://www.sciencedirect.com/science/article/pii/S036031990700328X

  12. C. Jeppesen, S.S. Araya, S.L. Sahlin, S. Thomas, S.J. Andreasen, S.K. Kær, Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation. J. Power Sources 359, 37–47 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.021. http://dx.doi.org/10.1016/j.jpowsour.2017.05.021

  13. A. Weiß, S. Schindler, S. Galbiati, M.A. Danzer, R. Zeis, Distribution of relaxation times analysis of high temperature PEM fuel cell impedance spectra. Electrochim. Acta 230, 391–398 (2017). https://doi.org/10.1016/j.electacta.2017.02.011. http://linkinghub.elsevier.com/retrieve/pii/S001346861730261X

  14. S. Thomas, J.R. Vang, S.S. Araya, S.K. Kær, Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions. Appl. Energy 192, 422–436 (2016). http://dx.doi.org/10.1016/j.apenergy.2016.11.063. http://linkinghub.elsevier.com/retrieve/pii/S0306261916316488, http://www.sciencedirect.com/science/article/pii/S0306261916316488

Download references

Acknowledgements

The authors would like to thank EUDP for funding the work through the ADDPower project. The authors would also like to acknowledge Serenergy A/S for supplying the stack for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobi Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, S., Araya, S.S., Sahlin, S.L., Kær, S.K. (2020). Electrochemical Impedance Parameter Extraction for Online Control of Reformed Methanol High Temperature PEM Fuel Cells. In: Zamboni, W., Petrone, G. (eds) ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, vol 615. Springer, Cham. https://doi.org/10.1007/978-3-030-37161-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37161-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37160-9

  • Online ISBN: 978-3-030-37161-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics