Skip to main content
Log in

Synthesis of nanocrystalline alumina by thermal decomposition of aluminum isopropoxide in 1-butanol and their applications as cobalt catalyst support

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanocrystalline alumina powders were prepared by thermal decomposition of aluminum isopropoxide (AIP) in 1-butanol at 300 °C for 2 h and employed as cobalt catalyst supports. The crystallization of alumina was found to be influenced by the concentration of AIP in the solution. At low AIP content, wrinkled sheets-link structure of γ-Al2O3 was formed, while at high AIP concentrations, fine spherical particles of χ-Al2O3 were obtained. It was found that using these fine particles alumina as cobalt catalyst supports resulted in much higher amounts of cobalt active sites measured by H2 chemisorption and higher CO hydrogenation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Church, N. W. Cant and D. L. Trimm, Appl. Catal. A, 101(1), 105 (1993).

    Article  CAS  Google Scholar 

  2. G. Pajonk and S. Teichner, Aerogels, Springer, Berlin (1986).

    Google Scholar 

  3. C. Misra, Industrial alumina chemicals, ACS Monograph 184, Washington (1986).

  4. H. Topsoe, B. S. Clausen and F. E. Massoth, Hydrotreating catalysis, Springer, Berlin (1996).

    Google Scholar 

  5. C. J. Brinker and G. W. Scherrer, Sol-gel science, Academic Press, San Diego (1990).

    Google Scholar 

  6. K.-C. Song, K.-J. Woo and Y. Kang, Korean J. Chem. Eng., 16, 75 (1999).

    Article  CAS  Google Scholar 

  7. W. H. Dawson, Am. Ceram. Soc. Bull., 67, 1673 (1988).

    CAS  Google Scholar 

  8. S. G. Deng and Y. S. Lin, Sci. Lett., 16, 1291 (1997).

    Article  CAS  Google Scholar 

  9. Y. Sarikaya, I. Sevinc and M. Akinc, Powder Technol., 116(1), 109 (2001).

    Article  CAS  Google Scholar 

  10. S.-M. Oh and D.-W. Park, Korean J. Chem. Eng., 17, 299 (2000).

    Article  CAS  Google Scholar 

  11. M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc., 73, 1100 (1990).

    Article  CAS  Google Scholar 

  12. M. Inoue, H. Kominami and T. Inui, J. Chem. Soc. Dalton Trans., 3331 (1991).

  13. M. Inoue, H. Kominami and T. Inui, T. J. Am. Ceram. Soc., 75, 2597 (1992).

    Article  CAS  Google Scholar 

  14. M. Inoue, H. Kominami and T. Inui, Appl. Catal. A, 97, L25 (1993).

    Article  CAS  Google Scholar 

  15. M. Inoue, H. Kominami and T. Inui, Appl. Catal. A, 121, L1 (1995).

    CAS  Google Scholar 

  16. M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc., 75, 2597 (1996a).

    Article  Google Scholar 

  17. M. Inoue, Y. Kondo and T. Inui, Inorg. Chem., 27, 215 (1988).

    Article  CAS  Google Scholar 

  18. M. Inoue, H. Otsu, H. Kominami and T. Inui, Ind. Eng. Chem. Res., 35, 295 (1996b).

    Article  CAS  Google Scholar 

  19. Y. Deng, G.-D. Wei and C.-W. Nan, Chem. Phys. Lett., 368(5–6), 639 (2003).

    Article  CAS  Google Scholar 

  20. Y. Deng, X.-S. Zhou, G.-D. Wei, J. Liu, C.-W. Nan and S.-J. Zhao, J. Phys. Chem. Solids, 63(11), 2119 (2002).

    Article  CAS  Google Scholar 

  21. N. Berntsen, T. Gutjahr, L. Loeffler, J. R. Gomm, R. Seshadri and W. Tremel, Chem. Mater., 15(23), 4498 (2003).

    Article  CAS  Google Scholar 

  22. C. Wang, Z.-X. Deng, G. Zhang, S. Fan and Y. Li, Powder Technol., 125(1), 39 (2002).

    Article  CAS  Google Scholar 

  23. O. Mekasuwandumrong, H. Kominami, P. Praserthdam and M. Inoue, J. Am. Ceram. Soc., 87(8), 1543 (2004a).

    Article  CAS  Google Scholar 

  24. O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajam and W. Tanakulrungsank, J. Mater. Sci., 39, 2417 (2004b).

    Article  CAS  Google Scholar 

  25. O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn and W. Tanakulrungsank, Inorg. Chem. Commu., 6(7), 930 (2003).

    Article  CAS  Google Scholar 

  26. P. Praserthdam, M. Inoue, O. Mekasuvandumrong, W. Tanakulrungsank and S. Phatanasri, Inorg. Chem. Commu., 3(11), 671 (2000).

    Article  CAS  Google Scholar 

  27. M. Inoue, H. Otsu, H. Kominami and T. Inui, Ind. Eng. Chem. Res., 35, 295 (1996c).

    Article  CAS  Google Scholar 

  28. R. C. Reuel and C. H. Bartholomew, J. Catal., 85, 63 (1984).

    Article  CAS  Google Scholar 

  29. B. Jongsomjit, J. Panpranot and J. G. Goodwin Jr., J. Catal., 215(1), 66 (2003).

    Article  CAS  Google Scholar 

  30. R. B. Anderson, The Fischer-Tropsch synthesis, Academic Press, San Diego (1984).

    Google Scholar 

  31. Y. Zhang, D. Wei, S. Hammache and J. G. Goodwin Jr., J. Catal., 188(2), 281 (1999).

    Article  CAS  Google Scholar 

  32. B. Ernst, S. Libs, P. Chaumette and A. Kiennemann, Appl. Catal. A, 186(1–2), 145 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyasan Praserthdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pansanga, K., Mekasuwandumrong, O., Panpranot, J. et al. Synthesis of nanocrystalline alumina by thermal decomposition of aluminum isopropoxide in 1-butanol and their applications as cobalt catalyst support. Korean J. Chem. Eng. 24, 397–402 (2007). https://doi.org/10.1007/s11814-007-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0068-9

Key words

Navigation