Skip to main content
Log in

Studies on the Low-Temperature Synthesis of Fine α-Al2O3 Powder by Precipitation Route

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Fine alpha-alumina (α-Al2O3) powder was prepared by simple precipitation technique using aluminium salt and ammonia as a precipitating agent. In this method, an aqueous solution of aluminium nitrate and ammonia were mixed with continuous stirring both in the presence and in the absence of polyethylene glycol (PEG). A controlled pH range of 7.5–8.5 was maintained throughout the synthesis process. A comparative study between the alumina powder prepared in the presence and absence of PEG was drawn into attention. The washing of the precipitate was deliberately avoided in one case to study the effect of washing on phase formation temperature. The synthesized powders were calcined at different temperatures and characterized by X-ray diffraction study, thermal analysis, infrared analysis, microstructural study, and particle size analysis. The results showed less agglomerated fine alumina powder formation in its pure α-Al2O3 phase at 1050°C in the presence of PEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Behera, P.S., Sarkar, R., and Bhattacharyya, S., Nano alumina: A review of the powder synthesis method, Interceram, 2016, vol. 65, nos. 1–2, pp. 10–16.

    CAS  Google Scholar 

  2. Souza Santos, P., Souza Santos, H., and Toledo, S.P., Standard transition aluminas. Electron microscopy studies, Mater. Res., 2000, vol. 3, no. 4, pp. 104–114.

    Article  Google Scholar 

  3. Kaya, C., Kaya, F., Boccaccini, A.R., and Chawla, K.K., Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition, Acta Mater., 2001, vol. 49, no. 7, pp. 1189–1197.

    Article  CAS  Google Scholar 

  4. Huang, C.L., Wang, J.J., and Huang, C.Y., Sintering behavior and microwave dielectric properties of nano alpha-alumina, Mater. Lett., 2005, vol. 59, no. 28, pp. 3746–3749.

    Article  CAS  Google Scholar 

  5. Szabo, N., Lee, C., Trimboli, J., Figueroa, O., Ramamoorthy, R., Midlam-Mohler, S., Soliman, A., Verweij, H., Dutta, P., and Akbar, S., Ceramic-based chemical sensors, probes and field-tests in automobile engines, J. Mater. Sci., 2003, vol. 38, no. 21, pp. 4239–4245.

    Article  CAS  Google Scholar 

  6. Elsen, S.R. and Ramesh, T., Optimization to develop multiple response hardness and compressive strength of zirconia reinforced alumina by using RSM and GRA, Int. J. Refract. Met. Hard Mater., 2015, vol. 52, pp. 159–164.

    Article  CAS  Google Scholar 

  7. Pathak, L.C., Singh, T.B., Das, S., Verma, A.K., and Ramachandrarao, P., Effect of pH on the combustion synthesis of nano-crystalline alumina powder, Mater. Lett., 2002, vol. 57, no. 2, pp. 380–385.

    Article  CAS  Google Scholar 

  8. Laine, R.M., Marchal, J.C., Sun, H.P., and Pan, X.Q., Nano-α-Al2O3 by liquid-feed flame spray pyrolysis, Nat. Mater., 2006, vol. 5, no. 9, pp. 710–712.

    Article  CAS  Google Scholar 

  9. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., and Gusarov, V.V., Preparation of nanocrystalline alumina under hydrothermal conditions, Inorg. Mater., 2005, vol. 41, no. 5, pp. 460–467.

    Article  Google Scholar 

  10. Zhuravlev, V.D., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., Grigorov, I.G., Bamburov, V.G., Beketov, A.R., and Baranov, M.V., Glycine-nitrate combustion synthesis of finely dispersed alumina, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 506–512.

    Article  CAS  Google Scholar 

  11. Kim, S.M., Lee, Y.J., Jun, K.W., Park, J.Y., and Potdar, H.S., Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite, Mater. Chem. Phys., 2007, vol. 104, no. 1, pp. 56–61.

    Article  CAS  Google Scholar 

  12. Tok, A.I.Y., Boey, F.Y.C., and Zhao, X.L., Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis, J. Mater. Process. Technol., 2006, vol. 178, nos. 1–3, pp. 270–273.

    Article  CAS  Google Scholar 

  13. Ganesh, I., Torres, P.M., and Ferreira, J.M.F., Densification ability of combustion-derived Al2O3 powders, Ceram. Int., 2009, vol. 35, no. 3, pp. 1173–1179.

    Article  CAS  Google Scholar 

  14. Wu, Z., Shen, Y., Dong, Y., and Jiang, J., Study on the morphology of α-Al2O3 precursor prepared by precipitation method, J. Alloys Compd., 2009, vol. 467, nos. 1–2, pp. 600–604.

    Article  CAS  Google Scholar 

  15. Kano, J., Saeki, S., Saito, F., Tanjo, M., and Yamazaki, S., Application of dry grinding to reduction in transformation temperature of aluminum hydroxides, Int. J. Miner. Process., 2000, vol. 60, no. 2, pp. 91–100.

    Article  CAS  Google Scholar 

  16. Shiau, F.S. and Fang, T.T., Low-temperature synthesis of α-alumina using citrate process with α-alumina seeding, Mater. Chem. Phys., 1999, vol. 60, no. 1, pp. 91–94.

    Article  CAS  Google Scholar 

  17. Kim, H.J., Kim, T.G., Kim, J.J., Park, S.S., Hong, S.S., and Lee, G.D., Influences of precursor and additive on the morphology of nanocrystalline α-alumina, J. Phys. Chem. Solids, 2008, vol. 69, nos. 5–6, pp. 1521–1524.

  18. Wu, Y.Q., Zhang, Y.F., Huang, X.X., and Guo, J.K., Preparation of plate like nano alpha alumina particles, Ceram. Int., 2001, vol. 27, no. 3, pp. 265–268.

    Article  CAS  Google Scholar 

  19. Lee, J.S., Kim, H.S., Park, N.K., Lee, T.J., and Kang, M., Low temperature synthesis of α-alumina from aluminum hydroxide hydrothermally synthesized using [Al (C2O4)x(OH)y] complexes, Chem. Eng. J., 2013, vol. 230, pp. 351–360.

    Article  CAS  Google Scholar 

  20. Temuujin, J., Jadambaa, T., Mackenzie, K.J.D., Angerer, P., Porte, F., and Riley, F., Thermal formation of corundum from aluminium hydroxides prepared from various aluminium salts, Bull. Mater. Sci., 2000, vol. 23, no. 4, pp. 301–304.

    Article  CAS  Google Scholar 

  21. Shin, D.C., Park, S.S., Kim, J.H., Hong, S.S., Park, J.M., Lee, S.H., Kim, D.S., and Lee, G.D., Study on α-alumina precursors prepared using different ammonium salt precipitants, J. Ind. Eng. Chem., 2014, vol. 20, no. 4, pp. 1269–1275.

    Article  CAS  Google Scholar 

  22. Parida, K.M., Pradhan, A.C., Das, J., and Sahu, N., Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method, Mater. Chem. Phys., 2009, vol. 113, no. 1, pp. 244–248.

    Article  CAS  Google Scholar 

  23. Potdar, H.S., Jun, K.W., Bae, J.W., Kim, S.M., and Lee, Y.J., Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route, Appl. Catal., A, 2007, vol. 321, no. 2, pp. 109–116.

    Article  CAS  Google Scholar 

  24. Zhao, R., Guo, F., Hu, Y., and Zhao, H., Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution, Microporous Mesoporous Mater., 2006, vol. 93, nos. 1–3, pp. 212–216.

    Article  CAS  Google Scholar 

  25. Sun, X., Li, J., Zhang, F., Qin, X., Xiu, Z., Ru, H., and You, J., Synthesis of nanocrystalline α-Al2O3 powders from nanometric ammonium aluminum carbonate hydroxide, J. Am. Ceram. Soc., 2003, vol. 86, no. 8, pp. 1321–1325.

    Article  CAS  Google Scholar 

  26. Sun, Z.X., Zheng, T.T., Bo, Q.B., Vaughan, D., and Warren, M., Effects of alkali metal ions on the formation of mesoporous alumina, J. Mater. Chem., 2008, vol. 18, no. 48, pp. 5941–5947.

    Article  CAS  Google Scholar 

  27. Li, J.G. and Sun, X., Synthesis and sintering behavior of a nanocrystalline α-alumina powder, Acta Mater., 2000, vol. 48, no. 12, pp. 3103–3112.

    Article  CAS  Google Scholar 

  28. Wu, Y.Q., Zhang, Y.F., Huang, X.X., and Guo, J.K., Preparation of plate like nano alpha alumina particles, Ceram. Int., 2001, vol. 27, no. 3, pp. 265–268.

    Article  CAS  Google Scholar 

  29. Kou, Y., Wang, S., Luo, J., Sun, K., Zhang, J., Tan, Z., and Shi, Q., Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications, J. Chem. Thermodyn., 2019, vol. 128, pp. 259–274.

    Article  CAS  Google Scholar 

  30. Dilshad, M.R., Islam, A., Hamidullah, U., Jamshaid, F., Ahmad, A., Butt, M.T.Z. and Ijaz, A., Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation, Sep. Purif. Technol., 2019, vol. 210, pp. 627–635.

    Article  CAS  Google Scholar 

  31. Gitzen, W.H., Alumina as a Ceramic Material, Hoboken: Wiley, 1970.

    Google Scholar 

  32. Bhattacharyya, S. and Behera, P.S., Synthesis and characterization of nano-sized α-alumina powder from kaolin by acid leaching process, Appl. Clay Sci., 2017, vol. 146, pp. 286–290.

    Article  CAS  Google Scholar 

  33. Kim, H.J., Kim, T.G., Kim, J.J., Park, S.S., Hong, S.S., and Lee, G.D., Influences of precursor and additive on the morphology of nanocrystalline α-alumina, J. Phys. Chem. Solids, 2008, vol. 69, nos. 5–6, pp. 1521–1524.

    Article  CAS  Google Scholar 

  34. Mokoena, T.P., Linganiso, E.C., Swart, H.C., Kumar, V., and Ntwaeaborwa, O.M., Cooperative luminescence from low temperature synthesized α-Al2O3:Yb3+ phosphor by using solution combustion, Ceram. Int., 2017, vol. 43, no. 1, pp. 174–181.

    Article  CAS  Google Scholar 

  35. Wang, S., Li, X., Wang, S., Li, Y., and Zhai, Y., Synthesis of γ-alumina via precipitation in ethanol, Mater. Lett., 2008, vol. 62, no. 20, pp. 3552–3554.

    Article  CAS  Google Scholar 

  36. Singh, R. and Bhattacharyya, S., Synthesis of mullite precursor powder in diphasic gel form, Trans. Ind. Ceram. Soc., 2014, vol. 73, no. 2, pp. 98–101.

    Article  Google Scholar 

  37. Behera, P.S., Bhattacharyya, S., and Sarkar, R., Effect of citrate to nitrate ratio on the sol-gel synthesis of nanosized α-Al2O3 powder, Ceram. Int., 2017, vol. 43, no. 17, pp. 15 221–15 226.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thanks the XRD-Texture lab at Department of Metallurgical and Materials Engineering, NIT Rourkela supported by DST-FIST (grant no. SR/FST/ETI-344-/2013 C and G Dated July 7, 2014).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunipa Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavi Suhasinee Behera, Sunipa Bhattacharyya Studies on the Low-Temperature Synthesis of Fine α-Al2O3 Powder by Precipitation Route. Glass Phys Chem 46, 312–320 (2020). https://doi.org/10.1134/S1087659620040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620040033

Keywords:

Navigation