Skip to main content
Log in

Synthesis and Investigation of Finely Dispersed Calcium Aluminates and Catalysts Based on Them

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Finely dispersed calcium aluminate C12A7 (12CaO⋅7Al2O3) samples are synthesized in water and in an autoclave using supercritical drying. The specific surface area of the aerogel samples reaches 330 m2/g immediately after drying in an autoclave and 170 m2/g after calcination at 500°C. Nanocrystalline materials with a mayenite crystal structure and a specific surface area of about 80 m2/g are obtained after calcination at 600°C in water by the reaction of CaO with an aluminum hydroxide suspension. The supported catalysts containing Pd, V, Fe, Ni, Cu, and Ag are synthesized by incipient wetness impregnation of the C12A7 sample obtained in water. The catalytic activity of the synthesized samples is studied in the oxidation of carbon monoxide CO. The highest catalytic activity is demonstrated by the 1% Pd/C12A7 sample. Electron-acceptor sites capable of ionizing phenothiazine molecules to its radical cations, electron-donor sites ionizing trinitrobenzene to its radical anions, and radical sites reacting with diphenylamine to form stable nitroxyl radicals are observed on the surface of all the synthesized materials based on C12A7. The formation of nitroxide radicals after the adsorption of diphenylamine indicates that oxygen radicals on the mayenite surface, which can be highly active in various catalytic oxidation reactions, exist on the mayenite surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London, U.K.) 419, 462 (2002).

    Article  CAS  Google Scholar 

  2. M. Kitano, Y. Inoue, Y. Yamazaki, et al., Nat. Chem. 4, 934 (2012).

    Article  CAS  Google Scholar 

  3. S. W. Yang, J. N. Kondo, K. Hayashi, et al., Appl. Catal., A 277, 239 (2004).

  4. Q. X. Li, H. Hosono, M. Hirano, et al., Surf. Sci. 527, 100 (2003).

    Article  CAS  Google Scholar 

  5. A. M. Volodin, V. I. Zaikovskii, R. M. Kenzhin, et al., Mater. Lett. 189, 210 (2017).

    Article  CAS  Google Scholar 

  6. A. M. Volodin, A. F. Bedilo, V. O. Stoyanovskii, and V. I. Zaikovskii, Nanosyst.: Phys., Chem., Math. 9, 558 (2018).

    CAS  Google Scholar 

  7. I. Meza-Trujillo, F. Devred, and E. M. Gaigneaux, Mater. Res. Bull. 119, 110542 (2019).

    Article  CAS  Google Scholar 

  8. A. A. Khaleel and K. J. Klabunde, Chem.-Eur. J. 8, 3991 (2002).

    Article  CAS  Google Scholar 

  9. E. V. Ilyina, I. V. Mishakov, A. A. Vedyagin, et al., Microporous Mesoporous. Mater 160, 32 (2012).

    Article  CAS  Google Scholar 

  10. N. V. Menshutina, A. E. Lebedev, and I. I. Khudeev, Sverkhkrit. Flyuidy: Teor. Prakt. 15 (1), 92 (2020).

    Google Scholar 

  11. O. B. Koper, I. Lagadic, A. Volodin, and K. J. Klabunde, Chem. Mater. 9, 2468 (1997).

    Article  CAS  Google Scholar 

  12. R. Richards, W. F. Li, S. Decker, et al., J. Am. Chem. Soc. 122, 4921 (2000).

    Article  CAS  Google Scholar 

  13. E. V. Ilyina, I. V. Mishakov, A. A. Vedyagin, et al., Microporous Mesoporous Mater. 175, 76 (2013).

    Article  CAS  Google Scholar 

  14. I. V. Mishakov, D. S. Heroux, V. V. Chesnokov, et al., J. Catal. 229, 344 (2005).

    Article  CAS  Google Scholar 

  15. I. V. Mishakov, A. A. Vedyagin, A. F. Bedilo, et al., Catal. Today 144, 278 (2009).

    Article  CAS  Google Scholar 

  16. E. V. Ilyina, I. V. Mishakov, A. A. Vedyagin, et al., J. Sol-Gel Sci. Technol. 68, 423 (2013).

    Article  CAS  Google Scholar 

  17. E. V. Ilyina, Y. Y. Gerus, S. V. Chereranova, and A. F. Bedilo, Mater. Lett. 293, 129699 (2021).

    Article  CAS  Google Scholar 

  18. G. M. Medine, V. Zaikovskii, and K. J. Klabunde, J. Mater. Chem. 14, 757 (2004).

    Article  CAS  Google Scholar 

  19. K. J. Klabunde, J. Stark, O. Koper, et al., J. Phys. Chem. 100, 12142 (1996).

    Article  CAS  Google Scholar 

  20. I. V. Mishakov, V. I. Zaikovskii, D. S. Heroux, et al., J. Phys. Chem. B 109, 6982 (2005).

    Article  CAS  Google Scholar 

  21. A. F. Bedilo, E. I. Shuvarakova, A. M. Volodin, et al., J. Phys. Chem. C 118, 13715 (2014).

    Article  CAS  Google Scholar 

  22. A. A. Vedyagin, A. F. Bedilo, I. V. Mishakov, and E. I. Shuvarakova, J. Serb. Chem. Soc. 82, 523 (2017).

    Article  CAS  Google Scholar 

  23. E. I. Shuvarakova, A. F. Bedilo, V. V. Chesnokov, and R. M. Kenzhin, Top. Catal. 61, 2035 (2018).

    Article  CAS  Google Scholar 

  24. H. Garcia and H. D. Roth, Chem. Rev. 102, 3947 (2002).

    Article  CAS  Google Scholar 

  25. M. Chiesa, E. Giamello, and M. Che, Chem. Rev. 110, 1320 (2010).

    Article  CAS  Google Scholar 

  26. E. N. Golubeva and N. A. Chumakova, Sverkhkrit. Flyuidy: Teor. Prakt. 13 (3), 33 (2018).

    Google Scholar 

  27. M. Anpo, G. Costentin, E. Giamello, H. Lauron-Pernot, and Z. Sojka, J. Catal. 393, 259 (2021).

    Article  CAS  Google Scholar 

  28. S. E. Malykhin, A. M. Volodin, A. F. Bedilo, and G. M. Zhidomirov, J. Phys. Chem. C 113, 10350 (2009).

    Article  CAS  Google Scholar 

  29. A. F. Bedilo and A. M. Volodin, Kinet. Catal. 50, 314 (2009).

    Article  CAS  Google Scholar 

  30. A. F. Bedilo, E. I. Shuvarakova, A. A. Rybinskaya, and D. A. Medvedev, J. Phys. Chem. C 118, 15779 (2014).

    Article  CAS  Google Scholar 

  31. D. A. Medvedev, A. A. Rybinskaya, R. M. Kenzhin, A. M. Volodin, and A. F. Bedilo, Phys. Chem. Chem. Phys. 14, 2587 (2012).

    Article  CAS  Google Scholar 

  32. A. A. Vedyagin, M. S. Gavrilov, A. M. Volodin, et al., Top. Catal. 56, 1008 (2013).

    Article  CAS  Google Scholar 

  33. M. V. Grishin, A. K. Gatin, V. G. Slutskii, A. S. Fedotov, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 14, 266 (2020).

    Article  CAS  Google Scholar 

  34. M. V. Grishin, A. K. Gatin, V. G. Slutsky, A. S. Fedotov, V. A. Kharitonova, and B. R. Shub, Russ. J. Phys. Chem. B 15, 373 (2021).

    Article  CAS  Google Scholar 

  35. M. V. Grishin, A. K. Gatin, V. G. Slutskii, A. S. Fedotov, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 14, 547 (2020).

    Article  CAS  Google Scholar 

  36. A. A. Vedyagin, A. M. Volodin, R. M. Kenzhin, V. V. Chesnokov, and I. V. Mishakov, Molecules 21, 1289 (2016).

    Article  Google Scholar 

  37. A. A. Vedyagin, A. M. Volodin, R. M. Kenzhin, et al., Catal. Today 307, 102 (2018).

    Article  CAS  Google Scholar 

  38. A. A. Vedyagin, A. M. Volodin, V. O. Stoyanovskii, et al., Catal. Today 238, 80 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K.V. Tregubova, S.V. Cherepanova, and E.Yu. Gerasimov for their participation in the experiments.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation under a state order of the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (registration number AAAA-A21-121011390054-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Bedilo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvarakova, E.I., Bedilo, A.F., Kenzhin, R.M. et al. Synthesis and Investigation of Finely Dispersed Calcium Aluminates and Catalysts Based on Them. Russ. J. Phys. Chem. B 16, 411–420 (2022). https://doi.org/10.1134/S199079312203023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312203023X

Keywords:

Navigation