Skip to main content

Advertisement

Log in

Effects of elevated seawater pCO2 on early development of scallop Argopecten irradias (Lamarck, 1819)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

To investigate the effects of elevated seawater pCO2 on the early developmental stages of marine benthic calcifying organisms, we exposed the eggs and larvae of Argopecten irradias, an important bivalve species in Chinese aquaculture, in seawater equilibrated with CO2-enriched (1000 ppm) gas mixtures. We demonstrated that elevated seawater pCO2 significantly interfered with fertilization and larval development and resulted in an increased aberration rate. Fertilization in the treatment (pH 7.6) was 74.3% ± 3.8%, which was 9.7% lower than that in the control (pH 8.3) (84.0% ±3.0%). Hatching success decreased by 23.7%, and aberration rate increased by 30.3% under acidic condition. Larvae in acidified seawater still developed a shell during the post-embryonic phase. However, the shell length and height in the treatment were smaller than those in the control. The development of embryos differed significantly at 12 h after fertilization between the two experimental groups. Embryos developed slower in acidified seawater. Nearly half of the embryos in the control developed into D-shaped larvae at 48 h after fertilization, which were considerably more than those in the treatment (11.7%). Results suggest that future ocean acidification (OA) would cause detrimental effects on the early development of A. irradias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addadi, B. L., Raz, S., and Wiener, S., 2003. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 15: 959–970.

    Article  Google Scholar 

  • Belivermis, M., Warnau, M., Merian, M., Oberhänsli, F., Teyssié, J., and Lacoue-Labarthe, T., 2015. Limited effects of increased CO2 and temperature on metal and radionuclide bioaccumulation in a sessile invertebrate, the oyster Crassostrea gigas. ICES Journal of Marine Science: Journal du Conseil, fsv236.

    Google Scholar 

  • Bijma, J., Hönisch, B., and Zeebe, R. E, 2002. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on ‘Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea’ by Broecker WS, Clark E. Geochemistry, Geophysics, Geosystems, 3: 1–7.

    Article  Google Scholar 

  • Christen, R., Schackmann, R., and Shapiro, B. M., 1983. Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. Journal of Biological Chemistry, 258: 5392–5399.

    Google Scholar 

  • Caldeira, K., and Wickett, M. E., 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365–365.

    Article  Google Scholar 

  • Carriker, M. R., and Palmer, R. E., 1979. Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica. Proc National Shell Fisheries Association, 69: 103–128.

    Google Scholar 

  • Dineshram, R., Thiyagarajan, V., Lane, A., Ziniu, Y., Xiao, S., and Leung, P. T. Y., 2013. Elevated CO2 alters larval proteome and its phosphorylation status in the commercial oyster, Crassostrea hongkongensis. Marine Biology, 160: 2189–2205.

    Article  Google Scholar 

  • Ed, D., and Pieter, T., 2014. NOAA/ESRL (www.esrl.noaa. gov/gmd/ccgg/trends/).

  • Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, L., Fabry, V. J., and Millero, F. J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366.

    Article  Google Scholar 

  • Feely, R. A., Doney, S. C., and Cooley, S. R., 2009. Ocean acidification: Present conditions and future changes in a high CO2 world. Oceanography, 22: 36–47.

    Article  Google Scholar 

  • Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier, R. W., 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change, 18: 37–46.

    Article  Google Scholar 

  • Gazeau, F. P. H., Gattuso, J. P., Dawber, C., Pronker, A. E., Peene, F., Peene, J., Heip, C. H. R., and Middelburg, J. J., 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences, 7: 2051–2060.

    Article  Google Scholar 

  • Gazeau, F., Gattuso, J. P., Greaves, M., Elderfield, H., Peene, J., Heip, C. H. R., and Middelburg, J. J., 2011. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster Crassostrea gigas. Plos One, 6, e23010.

    Article  Google Scholar 

  • Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middelburg, J. J., and Heip, C. H. R., 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34: L07603.

  • Gould, M. C., and Stephano, J. L., 2003. Polyspermy prevention in marine invertebrates. Microscopy Research and Technique, 61: 379–388.

    Article  Google Scholar 

  • Havenhand, J. N., Buttler, F. R., Thorndyke, M. C., and Williamson, J. E., 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology, 18: R651–R652.

    Article  Google Scholar 

  • Havenhand, J. N., and Schlegel, P., 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 6: 3009–3015.

    Article  Google Scholar 

  • He, S., Lin, C., He, M., and Yan, Y., 2011. Impacts of ocean acidification on the development of Pinctada martensii embryo and early larva. Chinese Journal of Ecology, 30: 747–751.

    Google Scholar 

  • Hendriks, I. E., Duarte, C. M., and Alvarez, M., 2010. Vulnerability of marine biodiversity to ocean acidification: A metaanalysis. Estuarine, Coastal and Shelf Science, 86: 157–164.

    Article  Google Scholar 

  • His, E., Seaman, M. N. L., and Beiras, R., 1997. A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Research, 31: 351–355.

    Article  Google Scholar 

  • Jakubowska, M., and Normant-Saremba, M., 2015. The effect of CO2-induced seawater acidification on the behaviour and metabolic rate of the Baltic clam Macoma balthia. Annales Zoologici Fennici. Finnish Zoological and Botanical Publishing, 52: 353–367.

    Article  Google Scholar 

  • Jansson, A., Lischka, S., Boxhammer, T., Schulz, K. G., and Norkko, J., 2015. Larval development and settling of Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels. Biogeosciences Discussions, 12 (24): 20411–20435.

    Article  Google Scholar 

  • Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G, 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology letters, 13: 1419–1434.

    Article  Google Scholar 

  • Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., and Robbins, L. L., 2005. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research. Report of a Workshop Held, 18: e20.

    Google Scholar 

  • Kurihara, H., and Shirayama, Y., 2004. Effects of increased atmospheric CO2 and decreased pH on sea urchin embryos and gametes. Echinoderms: Munchen: Proceedings of the 11th International Echinoderm Conference, 6-10 October 2003, Munich, Germany. CRC Press, 31.

    Google Scholar 

  • Kurihara, H., and Shirayama, Y., 2004. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology-Progress Series, 274: 161–169.

    Article  Google Scholar 

  • Kurihara, H., Kato, S., and Ishimatsu, A., 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biology, 1: 91–98.

    Article  Google Scholar 

  • Lee, S. W., Hong, S. M., and Choi, C. S., 2006. Characteristics of calcification processes in embryos and larvae of the Pacific oyster, Crassostrea gigas. Bulletin of Marine Science, 78: 309–317.

    Google Scholar 

  • Li, S., Liu, C., Huang, J., Liu, Y., Zhang, S., Zheng, G., Xie, L., and Zhang, R., 2016. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Scientific Reports, 6.

    Google Scholar 

  • Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology Oceanography, 18: 897–907.

    Article  Google Scholar 

  • Melzner, F., Gö bel, S., Langenbuch, M., Gutowskab, M. A., Pö rtnerb, H. O., and Lucassenb, M., 2009. Swimming performance in Atlantic cod Gadus morhua following long-term (4-12 months) acclimation to elevated seawater pCO2. Aquatic Toxicology, 92: 30–37.

    Article  Google Scholar 

  • Metzger, D. C., 2012. Characterizing the effects of ocean acidification in larval and juvenile Manila clam, Ruditapes philippinarum, using a transcriptomic approach. University of Washington, 1–15.

    Google Scholar 

  • Mucci, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283: 780–799.

    Article  Google Scholar 

  • Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool, A., 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681–686.

    Article  Google Scholar 

  • Parker, L. M., Ross, P. M., and O’Connor, W. A., 2010. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology, 157: 2435–2452.

    Article  Google Scholar 

  • Reuter, K. E., Lotterhos, K. E., Crim, R. N., Thompson, C. A., and Harley, C. D. G., 2011. Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus. Global Change Biology, 17: 163–171.

    Article  Google Scholar 

  • Range, P., Chícharo, M. A., Ben-Hamadou, R., Piló, D., Fernandez-Reiriz, M. J., Labarta, U., Marin, M. G., Bressan, M., Matozzo, V., Chinellato, A., Munari, M., El Menif, N. T., Dellali, M., and Chícharo, L., 2014. Impacts of CO2-induced seawater acidification on coastal Mediterranean bivalves and interactions with other climatic stressors. Regional Environmental Change, 14 (1): S19–S30.

    Article  Google Scholar 

  • Riebesell, U., Zonderwan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364–367.

    Article  Google Scholar 

  • Sagara, J., 1958. Artificial discharge of reproductive elements of certain bivalves caused by treatment of sea water and by injection with NH4OH. Bulletin of the Japanese Society of Scientific Fisheries, 23: 505–510.

    Article  Google Scholar 

  • Shirayama, Y., and Thornton, H., 2005. Effect of increased atmospheric CO2 on shallow water marine benthos. Journal of Geophysical Research, 110, C09S08.

  • Stenzel, H. B., 1964. Oysters: Composition of the larval shell. Science, 145: 155–156.

    Article  Google Scholar 

  • Styan, C. A., 1998. Polyspermy, egg size, and the fertilization kinetics of free-spawning marine invertebrates. The American Naturalist, 152: 290–297.

    Article  Google Scholar 

  • Suwa, R., Morita, M., Iguchi, A., Nakamuraa, M., Shimadaa, K., Sakaia, K., and Suzuki, A., 2010. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote, 18: 103–107.

    Article  Google Scholar 

  • Talmage, S. C., and Gobler, C. J., 2011. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves. PloS One, 6: e26941.

    Article  Google Scholar 

  • Van Colen, C., Debusschere, E., Braeckman, U., van Gansbeke, D., and Vincx, M., 2012. The early life history of the clam Macoma balthica in a high CO2 world. PloS One, 7: e44655.

    Article  Google Scholar 

  • Vargas, C. A., de la Hoz, M., Aguilera, V., San Martín, V., Manríquez, P. H., Navarro, J. M., Torres, R., Lardies, M. A., and Lagos, N. A., 2013. CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. Journal of Plankton Research, 0: 1–10.

    Google Scholar 

  • Waller, T. R., 1981. Functional morphology and development of veliger larvae of the European oyster. Ostrea edulis, 1–70.

    Google Scholar 

  • Wang, R. C., Wang, Z. P., and Zhang, J. Z., 2008. Science of Marine Shellfish Culture. Ocean University of China Press, Qingdao, 277–283.

    Google Scholar 

  • Weiss, I. M., Tuross, N., Addadi, L., and Weiner, S., 2002. Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 293: 478–491.

    Article  Google Scholar 

  • White, M. M., McCorcle, D. C., Mullineaux, L. S., and Cohen, A. L., 2013. Early exposure of bay scallops Argopecten irradians to high CO2 causes a decrease in larval shell growth. Plos One, 8 (4): e61065.

    Article  Google Scholar 

  • Xu, M. M., Zhai, W. D., and Wu, J. H., 2013. Effects of CO2-driven ocean acidification on the calcification and respiration of Ruditapes philippinarum. Acta Oceanologica Sinica, 35: 112–120 (in Chinese with English abstract).

    Article  Google Scholar 

  • Zeebe, R. E., Zachos, J. C., Caldeira, K., and Tyrrel, T., 2008. Carbon emissions and acidification. Science, 321: 51–52.

    Article  Google Scholar 

  • Zhang, F. S., 2003. China aquaculture industry development in modern times and contemporary age: Status and prospects. World Scientific-technology Research Development, 25: 5–13 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, M., Zou, J., Fang, J., Zhang, J., Du, M., Li, B., and Ren, L., 2011. Impacts of marine acidification on calcification, respiration and energy metabolism of Zhikong scallop Chlamys farreri. Progress in Fishery Sciences, 23 (4): 48–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongju Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, G., Zhang, T. et al. Effects of elevated seawater pCO2 on early development of scallop Argopecten irradias (Lamarck, 1819). J. Ocean Univ. China 15, 1073–1079 (2016). https://doi.org/10.1007/s11802-016-3146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3146-y

Keywords

Navigation