Skip to main content

Advertisement

Log in

Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study compared the synergistic effects of elevated pCO2 and temperature on the early life history stages of two ecologically and economically important oysters: the Sydney rock oyster, Saccostrea glomerata and the Pacific oyster, Crassostrea gigas. Gametes, embryos, larvae and spat were exposed to four pCO2 (375, 600, 750, 1,000 µatm) and four temperature (18, 22, 26, 30°C) levels. At elevated pCO2 and suboptimal temperatures, there was a reduction in the fertilization success of gametes, a reduction in the development of embryos and size of larvae and spat and an increase in abnormal morphology of larvae. These effects varied between species and fertilization treatments with S. glomerata having greater sensitivity than C. gigas. In the absence of adaptation, C. gigas may become the more dominant species along the south-eastern coast of Australia, recruiting into estuaries currently dominated by the native S. glomerata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anger K (1987) The DO threshold: a critical point in the larval development of decapod crustaceans. J Exp Mar Biol Ecol 108:15–30

    Article  Google Scholar 

  • Anil AC, Desai D, Khandeparker L (2001) Larval development and metamorphosis in Balanus amphritrite Darwin (Cirripedia; Thoracica): significance of food concentration, temperature and nucleic acids. J Exp Mar Biol Ecol 263:125–141

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105:17442–17446

    Article  CAS  PubMed  Google Scholar 

  • Bamber RN (1987) The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). J Exp Mar Biol Ecol 108:241–260

    Article  CAS  Google Scholar 

  • Bamber RN (1990) The effects of acidic seawater on three species of lamellibranch mollusc. J Exp Mar Biol Ecol 143(3):181–191

    Article  Google Scholar 

  • Bayne BL (2002) A physiological comparison between Pacific oysters Crassostrea gigas and Sydney rock oysters Saccostrea glomerata: food feeding and growth in a shared estuarine habitat. MEPS 232:163–178

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the south Atlantic. Springer, Berlin, pp 489–512

    Google Scholar 

  • Butler JN (1982) Carbon dioxide equilibria and their applications. Addison-Wesley Publishing Company, Massachusetts, pp 1–259

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. P R Soc B 276:1183–1888

    Article  Google Scholar 

  • Calcagno JA, Lovrich GA, Thatje S, Nettelmann U, Anger K (2005) First year growth in the lithodids Lithodes santolla and Paralomis granulosa reared at different temperatures. J Sea Res 54(3):221–230

    Article  Google Scholar 

  • Carr RS, Biedenbach JM, Nipper M (2006) Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Con Tox 51:573–579

    Article  CAS  Google Scholar 

  • Carriker MR, Palmer RE (1979) Ultrastructure morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica. Proc Natl Shellfish Assoc 69:103–128

    Google Scholar 

  • Christen R, Schackmann RW, Shapiro BM (1983) Metabolism of sea urchin sperm. Interrelationships between intracellular pH, ATPase activity, and mitochondrial respiration. J Biol Chem 258:5392–5399

    CAS  PubMed  Google Scholar 

  • Cipollaro M, Corcale G, Esposito A, Ragucci E, Staiano N, Giordano GG, Pagano G (1986) Sublethal pH decrease may cause genetic damage to eukaryotic cell: a study on sea urchins and Salmonella typhimurium. Teratogen Carcin Mut 6:275–287

    Article  CAS  Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    Article  CAS  PubMed  Google Scholar 

  • Connell JH (1961) The effects of competition, predation by Thais lapillus and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31:61–104

    Article  Google Scholar 

  • Dinamani P (1973) Embryonic and larval development in the New Zealand rock oyster Crassostrea glomerata (Gould 1850). Veliger 15(4):295–299

    Google Scholar 

  • Dove MC, O’Connor WA (2007) Salinity and temperature tolerance of Sydney rock oysters Saccostrea glomerata during early ontogeny (Gould 1850). J Shellfish Res 26(4):939–947

    Article  Google Scholar 

  • Dove MC, Sammut J (2007a) Histological and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows. J Shellfish Res 26(2):509–518

    Article  Google Scholar 

  • Dove MC, Sammut J (2007b) Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata (Gould 1850). J Shellfish Res 26(2):519–527

    Article  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. MEPS 373:285–294

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa H (1989) Differences in temperature dependence of early development of the sea urchins with different growing seasons. Biol Bull 176:96–102

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification in the articulated coralline alga Corallina pulilifera with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    Article  CAS  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip C, Carlo HR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34 (7)

  • Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci 106(23):9316–9321

    Article  CAS  PubMed  Google Scholar 

  • Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. MEPS 146:265–282

    Article  Google Scholar 

  • Grainger JL, Winkler MM, Steinhardt RA (1979) Intracellular pH controls protein synthesis rate in the sea urchin egg and early embryo. J Dev Biol 68:396–406

    Article  CAS  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations–Part II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Hagström BE, Hagström B (1959) The effect of decreased and increased temperatures on fertilization. Exp Cell Res 16:174–183

    Article  PubMed  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6(2):4573–4586

    Article  Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of elevated pCO2 reduce fertilization success in a sea urchin. Curr Biol 18(15):R651–R652

    Article  CAS  PubMed  Google Scholar 

  • Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis. Venus 58:119–127

    Google Scholar 

  • Heasman MP, Goard L, Diemar J, Callinan RB (2000) Improved early survival of molluscs: Sydney rock oyster (Saccostrea glomerata). NSW Fisheries Final Report Series, Aquaculture CRC Project A.2.1 No. 29: ISSN 1440-3544

  • His E, Robert R, Dinet A (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas. Mar Biol 100:455–463

    Article  Google Scholar 

  • His E, Seaman MNL, Beiras R (1997) A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Houghton JT, Filho LGM, Callander BH, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995. The science of climate change. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, New York, pp 19–24

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, New York, USA, pp 1–83

    Google Scholar 

  • Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol-Prog Ser 155:269–301

    Article  Google Scholar 

  • Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154:23–34

    Article  PubMed  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kikkawa T, Ishimatsu A, Kita J (2003) Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environ Toxicol 18(6):375–382

    Google Scholar 

  • Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56(6):1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol-Prog Ser 274:161–169

    Article  Google Scholar 

  • Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanography 60:743–750

    Article  CAS  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    Article  CAS  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233

    Article  Google Scholar 

  • Lamprell K, Healy J (1998) Bivalves of Australia Vol 2. Backhuys Publishers, Leiden, The Netherlands: 288 pp

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cy 14:639–654

    Article  CAS  Google Scholar 

  • Langenbuch M, Pörtner HO (2004) High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol 70:743–750

    Article  Google Scholar 

  • Langenbuch M, Bock C, Leibfritz D, Pörtner HO (2006) Effects of environmental hypercapnia on animal physiology: a 13C NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comp Biochem Phys 144:479–484

    Article  CAS  Google Scholar 

  • Leclercq N, Gattuso J-P, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Global Change Biol 6:329–334

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory. US Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biol 15:2089–2100

    Article  Google Scholar 

  • Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S (2007) CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol-Prog Ser 350:91–97

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner HO, Lucassen M (2009) Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater pCO2. Aquat Toxicol 92:30–37

    Article  CAS  PubMed  Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151

    Article  Google Scholar 

  • Michaelidis B, Ouzounts C, Paleras A, Pörtner H-O (2005) Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. MEPS 293:109–118

    Article  Google Scholar 

  • Mitchell I, Jones A, Crawford C (2000) Distribution of feral Pacific oysters and environmental conditions. Marine Research Laboratories–Tasmanian Aquaculture and Fisheries Institute, University of Tasmania

  • Munday PL, Donelson JM, Dixson DL, Endo GGK (2009a) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc Lond Biol 276:3275–3283

    Article  CAS  Google Scholar 

  • Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB (2009b) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106:1848–1852

    Article  CAS  PubMed  Google Scholar 

  • Nell JA (1993) Farming the Sydney Rock Oyster (Saccostrea commercialis) in Australia. Rev Fish Sci 1:97–120

    Article  Google Scholar 

  • Nell JA, Sheridan AK, Smith IR (1996) Progress in a Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), breeding program. Aquaculture 144:295–302

    Article  Google Scholar 

  • O’Connor WA, Lawler NF (2004) Salinity and temperature tolerance of embryos and juveniles of the pearl oyster, Pinctada imbricata Röding. Aquaculture 229:493–506

    Article  Google Scholar 

  • O’Connor WA, Dove MC, Finn B, O’Connor SJ (2008) Manual for hatchery production of Sydney rock oysters (Saccostrea glomerata). Final report to Fisheries Research and Development Corporation, Deakin, ACT, Australia. New South Wales Department of Primary Industries–Fisheries Research Report Series, 20: 55 p

  • Orr JC, Fabry J, Aumont O (2005) Anthropogenic ocean acidifcation over the 21st century and its impact on calcifying organisms. Nature 437(29):681–686

    Article  CAS  PubMed  Google Scholar 

  • Pagano G, Cipollaro M, Corsale G, Esposoti A, Ragucci E, Giordano GG (1985a) pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. I. Exposure of embryos. Teratogen Carcin Mut 5:101–112

    Article  CAS  Google Scholar 

  • Pagano G, Cipollaro M, Corsale G, Esposoti A, Ragucci E, Giordano GG (1985b) pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. II. Exposure of sperm. Teratogen Carcin Mut 5:113–121

    Article  CAS  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2009) The effect of elevated pCO2 and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850). Global Change Biol 15:2123–2136

    Article  Google Scholar 

  • Pörtner HO, Reipschläger A, Heisler N (1998) Acid–base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201:43–54

    PubMed  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe R, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  PubMed  Google Scholar 

  • Ross PM, Minchinton TE, Ponder WF (2009) The ecology of molluscs in Australian saltmarshes. Saltmarshes of Australia, Neil Saintilan Edition

    Google Scholar 

  • Runnström S (1927) b e drie thermopathie der fortpflanzung und entwicklung mariner tiere. Berg Mus Arb Naturvid 2:1–67

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, New York, 3rd edn 887 pp

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, et al. (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge UK, and New York, USA

  • Stenzel HB (1964) Oysters: composition of the larval shell. Science 145:155–156

    Article  CAS  PubMed  Google Scholar 

  • Strathmann RR (1987) Larval feeding. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 9. Blackwell Scientific, Palo Alto, pp 465–550

    Google Scholar 

  • Underwood AJ (1997) Ecological experiments: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Waller TR (1981) Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithson Contrib Zool 328:1–70

    Google Scholar 

  • Watson S-A, Southgate PC, Tyler PA, Peck LS (2009) Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. J Shellfish Res 28:431–437

    Article  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  CAS  PubMed  Google Scholar 

  • White I (2002) Safeguarding environmental conditions for oyster cultivation in New South Wales. Report (No. 010801) for the NSW Healthy Rivers Commission. 83 p

  • Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design. McGraw Hill, New York

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the tremendous support of Industry and Investment NSW, who joined with the University of Western Sydney to complete this study. We especially thank Michael Dove, Ben Finn, Nick Stanning and Steve O’Connor. We also thank the School of Natural Sciences and College of Health and Sciences at the University of Western Sydney and the support of our colleagues including Matthew Smiles, Raymond J Ritchie, Charles Morris, Paul Thomas, Vincent Wyatt, Larissa Borysko, Julie and Steven Parker. This study is part of the senior author’s PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Ross.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, L.M., Ross, P.M. & O’Connor, W.A. Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157, 2435–2452 (2010). https://doi.org/10.1007/s00227-010-1508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1508-3

Keywords

Navigation