Skip to main content
Log in

Isolation and characterization of calmodulin gene of Alexandrium catenella (Dinoflagellate) and its performance in cell growth and heat stress

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) can occur and then disappear quickly, corresponding to consistent growing and declining of heavy biomasses. The molecular mechanism of blooming remains unclear. In this study, calmodulin gene (cam) of HAB causing species Alexandrium catenella was isolated and characterized. The expression of calmodulin gene was profiled at different growth rates and in heat stress. The full cDNA of cam was 597 nucleotides (nt) in length, including a 25 nt 5t’ untranslated region (UTR), an 122 nt 3′ UTR, and a 450 nt open reading frame (ORF) encoding 149 amino acids. The deduced calmodulin (CaM) was highly conserved in comparison with those of other organisms. As was determined with real-time RT PCR, the abundance of cam transcript varied in a pattern similar to cell growth rate during the whole growing period. The abundance of cam transcript increased by more than 8 folds from lag growth phase to exponential growth phase, and then obviously decreased from exponential growth phase to stationary/decline growth phase. In addition, the relative abundance of cam transcript significantly declined with time during heat shock. Taking CaM function described in other organisms into account, we believe that Ca2+-involved signal transduction, methylation of DNA and toxin precursors underlined the cell growth of this species. The response of cam gene to heat stress in dinoflagellate suggested restrictions in Ca2+ signal transduction and methylation. These findings are helpful to understand the relationships among growth, cell signal transduction, bloom formation and interaction with environmental stimuli in dinoflagellates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. M., 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean and Coastal Management, 52: 342–347.

    Article  Google Scholar 

  • Babu, Y. S., Bugg, C. E., and Cook, W. J., 1988. Structure of calmodulin at 2.2 resolution. Journal of Molecular Biolology, 204: 191–204.

    Article  Google Scholar 

  • Davidkova, G., Zhang, S. P., Nichols, R. A., and Swiss, B., 1996. Reduced level of calmodulin in PC12 cells induced by stable expression of calmodulin antisense RNA inhibits cell proliferation and induces neurite outgrowth. Neuroscience, 75: 1003–1019.

    Article  Google Scholar 

  • Eilam, Y., and Chernichovsky, D., 1988. Low concentrations of trifluoperazine arrest the cell division cycle of Saccharomyces cerevisiae at two specific stages. Microbiology, 134: 1063–1069.

    Article  Google Scholar 

  • Gong, M., Li, Y. J., Dai, X., Tian, M., and Li, Z. G., 1997. Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. Journal of Plant Physiology, 150(5): 615–621.

    Article  Google Scholar 

  • Gong, M., van der Luit, A. H., Knight, M. R., and Trewavas, A. J., 1998. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiology, 116(1): 429–437.

    Article  Google Scholar 

  • Guo, C. H., Liu, J. W., Lu, Z. H., and Zhan, L. L., 2009. Purification and Identification of Calmodulin (CaM) from Prorocentrum donghaiense Lu. Journal of Jimei University (Natural Science), 14(1): 29–33 (in Chinese).

    Article  Google Scholar 

  • Hackett, J. D., Scheetz, T. E., Yoon, H. S., Soares, M. B., Bonaldo, M. F., Casavant, T. L., and Bhattacharya, D., 2005. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics, 6: 80–93.

    Article  Google Scholar 

  • Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia, 32: 79–99.

    Article  Google Scholar 

  • Huang, J., Liang, S., Sui, Z. H., Mao, Y. X., and Guo, H., 2010. Cloning and characterization of proliferating cell nuclear antigen gene of Alexandrium catenella (Dinoflagellate) with respect to cell growth. Acta Oceanologica Sinica, 29: 90–96.

    Article  Google Scholar 

  • Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D’ Amato, L., Terrazzano, G., and Smetacek, V., 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429: 403–407.

    Article  Google Scholar 

  • Ihara-Ohori, Y., Nagano, M., Muto, S., Uchimiya, H., and Kawai-Yamada, M., 2007. Cell death suppressor Arabidopsis bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiology, 143: 650–660.

    Article  Google Scholar 

  • Lee, S. H., Kim, J. C., Lee, M. S., Heo, W. D., Seo, H. Y., Yoon, H. W., Hong, J. C., Lee, S. Y., Bahk, J. D., and Hwang, I., 1995. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. Journal of Biological Chemistry, 270: 21806–21812.

    Article  Google Scholar 

  • Lin, S., 2011. Genomic understanding of dinoflagellates Research in Microbiology, 162: 551–569.

    Article  Google Scholar 

  • Lin, S., and Carpenter, E. J., 1998. Identification and preliminary characterization of PCNA gene in the marine phytoplankton Dunaliella tertiolecta and Isochrysis galbana. Molecular Marine Biology and Biotechnology, 7: 62–71.

    Google Scholar 

  • Lin, S., and Corstjens, P., 2002. Molecular cloning and expression of the proliferating cell nuclear antigen gene from the coccolithorid Pleurochrysis carterae (Haptophyceae). Journal of Phycology, 38: 164–173.

    Article  Google Scholar 

  • Lin, S., Carpenter, E. J., and Chang, J., 1996. Detection of p34cdc2- and cyclin B-like proteins in Dunaliella tertiolecta (Chlorophyceae). Marine Biology, 125: 603–610.

    Google Scholar 

  • Lin, S., Magaletti, E., and Carpenter, E. J., 2000. Molecular cloning and antiserum development of cyclin box in the brown tide alga Aureococcus anophagefferens. Marine Biotechnology, 2: 577–586.

    Article  Google Scholar 

  • Ling, V., Perera, I., and Zielinski, R. E., 1991. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiology, 96: 1196–1202.

    Article  Google Scholar 

  • Liu, H., Li, G., Chang, H., Sun, D. Y., Zhou, R. G., and Li, B., 2007. Calmodulin binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environment, 30(2): 156–164.

    Article  Google Scholar 

  • Liu, J., Jiao, N., and Cai, H., 2006. Cell cycle and cell signal transduction in marine phytoplankton. Progress in Natural Science, 16(7): 671–678.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods, 25: 402–408.

    Article  Google Scholar 

  • Lukas, T. J., Wiggins, M. E., and Watterson, D. M., 1985. Amino acid sequence of a novel calmodulin from the unicellular alga Chlamydomonas. Plant Physiology, 78: 477–483.

    Article  Google Scholar 

  • Means, A. R., 1994. Calcium, calmodulin and cell cycle regulation. FEBS Letters, 347: 1–4.

    Article  Google Scholar 

  • Moreno, Díaz de la Espina, S., Alverca, E., Cuadraclo, A., and Franca, S., 2005. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. European Journal of Cell Biology, 84: 137–149.

    Article  Google Scholar 

  • Murray, M. G., and Thompson, W. F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321–4325.

    Article  Google Scholar 

  • Okamoto, O. K., and Hastings, J. W., 2003. Novel dinoflagellate clock-related genes identified through microarray analysis. Journal of Phycology, 39: 519–526.

    Article  Google Scholar 

  • Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z. M., Seay, M., Gerstein, M., Snyder, M., and Dinesh-Kumar, S. P., 2007. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences, 104: 4730–4735.

    Article  Google Scholar 

  • Porebski, S., Bailey, L. G., and Baum, B. R., 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15: 8–15.

    Article  Google Scholar 

  • Reddy, A., 2001. Calcium: silver bullet in signaling. Plant Science, 160: 381–404.

    Article  Google Scholar 

  • Reddy, A., Day, I. S., Narasimhulu, S. B., Safadi, F., Reddy, V. S., Golovkin, M., and Harnly, M. J., 2002. Isolation and characterization of a novel calmodulin-binding protein from potato. The Journal of Biological Chemistry, 277: 4206–4214.

    Article  Google Scholar 

  • Saimi, Y., and Kung, C., 2002. Calmodulin as an ion channel subunit. Annual Review of Physiology, 64: 289–311.

    Article  Google Scholar 

  • Sako, Y., Machida, S., Toda, H., and Ishida, Y., 1989. Purification and characterization of calmodulin from Crypthecodinium cohnii and Peridinium bipes. In: Red Tides: Biology, Environmental Science, and Toxicology. Okaichi, T., et al., eds., Proceedings of the first International Symposium on Red Tides, November 10–14, 1987, in Takamatsu, Kagawa Prefecture, Japan, 337–339.

    Google Scholar 

  • Sanders, D., Brownlee, C., and Harper, J. F., 1999. Communicating with calcium. The Plant Cell Online, 11: 691–706.

    Google Scholar 

  • Sasaki, Y., and Hidaka, H., 1982. Calmodulin and cell proliferation. Molecular Cell Biology Research Communications, 104: 451–456.

    Google Scholar 

  • Schleicher, M., Lukas, T. J., and Watterson, D. M., 1984. Isolation and characterization of calmodulin from the motile green alga Chlamydomonas reinhardtii. Archives of Biochemistry and Biophysics, 229: 33–42.

    Article  Google Scholar 

  • Smayda, T. J., 1989. Primary production and the global epidemic of phytoplankton blooms in the sea: a linkage?. In: Novel Phytoplankton Blooms. Cosper, E. M., et al., eds., Springer-Verlag, Berlin, 449–483.

    Chapter  Google Scholar 

  • Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for global epidemic. In: Toxic Marine Phytoplankton. Graneli, E., et al., eds., Elsevier Science Publishing Co., New York, 29–40.

    Google Scholar 

  • Snedden, W. A., and Fromm, H., 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytologist, 151: 35–66.

    Article  Google Scholar 

  • Toulza, E., Shin, M. S., Blanc, G., Audic, S., Laabir, M., Collos, Y., Claverie, J. M., and Grzebyk, D., 2010., Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Applied and Environmental Microbiology, 76: 4521–4529.

    Article  Google Scholar 

  • Trewavas, A., and Knight, M., 1994. Mechanical signalling, calcium and plant form. Plant Molecular Biology, 26: 1329–1341.

    Article  Google Scholar 

  • Tsim, S. T., Wong, J. T. Y., and Wong, Y. H., 1997. Calcium ion dependency and the role of inositol phosphates in melatonin-induced encystment of dinoflagellates. Journal of Cell Science, 110: 1387–1393.

    Google Scholar 

  • Uribe, P., Fuentes, D., Valde’s, J., Shmaryahu, A., Zu’niga, A., Holmes, D., and Valenzuela, P. D. T., 2008. Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. Marine Biotechnology, 10: 692–700.

    Article  Google Scholar 

  • Van Dolah, F. M., 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108: 133–140.

    Article  Google Scholar 

  • Van Dolah, F. M., Leighfield, T. A., Sandel, H. D., and Hsu, C. K., 1995. Cell division in the dinoflagellate Gambierdiscus toxicus is phased to the diurnal cycle and accompanied by activation of the cell cycle regulatory protein, CDC2 kinase. Journal of Phycology, 31: 395–400.

    Article  Google Scholar 

  • Yang, T., Segal, G., Abbo, S., Feldman, M., and Fromm, H., 1996. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Molecular and General Genetics, 252(6): 684–694.

    Article  Google Scholar 

  • Zhang, H., Hou, Y. B., Miranda, L., Campbell, D. A., Sturm, N. R., Gaasterland, T., and Lin, S. J., 2007. Spliced leader RNA trans-splicing in dinoflagellates. Proceedings of the National Academy of Sciences, 104: 4618–4623.

    Article  Google Scholar 

  • Zhang, W., Zhou, R. G., Gao, Y. J., Zheng, S. Z., Xu, P., Zhang, S. Q., and Sun, D. Y., 2009. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiology, 149(4): 1773–1784.

    Article  Google Scholar 

  • Zhao, L. Y., Mi, T. Z., Zhen, Y., Li, M. Y., He, S. Y., Sun, J., and Yu, Z. G., 2009. Cloning of proliferating cell nuclear antigen gene from the dinoflagellate Prorocentrum donghaiense and monitoring its expression profiles by real-time RT-PCR. Hydrobiologia, 627:19–30.

    Article  Google Scholar 

  • Zhou, R. G., Li, B., Liu, H., and Sun, D. Y., 2009. Progress in the participation of Ca2+-calmodulin in heat shock signal transduction. Progress in Natural Science, 19(10): 1201–1208.

    Article  Google Scholar 

  • Zielinski, R. E., 1998. Calmodulin and calmodulin-binding proteins in plants. Annual Review on Plant Biology, 49: 697–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Sui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, R., Sui, Z., Bao, Z. et al. Isolation and characterization of calmodulin gene of Alexandrium catenella (Dinoflagellate) and its performance in cell growth and heat stress. J. Ocean Univ. China 13, 290–296 (2014). https://doi.org/10.1007/s11802-014-2075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2075-x

Key words

Navigation