Skip to main content

Advertisement

Log in

High performance electro-optic modulator based on thin-film lithium niobate

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Electro-optic (EO) modulator plays a very critical role in the optical communication systems. Here, we report a stimulated thin-film lithium niobate (LN) modulator with a half-wave voltage-length product of 1.8 V·cm, which can successfully achieve modulation and demodulation of a 1 GHz sinusoidal signal with an amplitude of 5 V in experiment. The optical loss caused by metal electrodes is reduced by optimizing the waveguide structure and depositing silica onto the waveguide, and group-velocity matching and characteristic impedance matching are achieved by optimizing the buffer silica layer and the electrode structure for larger bandwidth, which simultaneously improves the modulation efficiency and bandwidth performance. Our work demonstrated here paves a foundation for integrated photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101–104.

    Article  ADS  Google Scholar 

  2. WANG C, ZHANG M, STREN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics express, 2018, 26(2): 1547–1555.

    Article  ADS  Google Scholar 

  3. XU M, HE M, ZHU Y, et al. Integrated thin film lithium niobate Fabry-Perot modulator[Invited][J]. Chinese optics letters, 2021, 19(6): 060003.

    Article  ADS  Google Scholar 

  4. HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits−1 and beyond[J]. Nature photonics, 2019, 13(5): 359–364.

    Article  ADS  Google Scholar 

  5. DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380–384.

    Article  ADS  Google Scholar 

  6. KHAREL P, REIMER C, LUKE K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357–363.

    Article  ADS  Google Scholar 

  7. XU H, LI X, XIAO X, et al. High-speed silicon modulator with band equalization[J]. Optics letters, 2014, 39(16): 4839–4842.

    Article  ADS  Google Scholar 

  8. CHMIELAK B, WALDOW M, MATHEISEN C, et al. Pockels effect based fully integrated, strained silicon electro-optic modulator[J]. Optics express, 2011, 19(18): 17212–17219.

    Article  ADS  Google Scholar 

  9. BHASKER P, NORMAN J, BOWERS J, et al. Intensity and phase modulators at 1.55 µm in GaAs/AlGaAs layers directly grown on silicon[J]. Journal of lightwave technology, 2018, 36(158): 4205–4210.

    Article  ADS  Google Scholar 

  10. WANG S, WANG L, ZHAO L, et al. Compact In-GaAsP/InP asymmetric Mach-Zehnder coupled square ring modulator[J]. IEEE photonics technology letters, 2017, 29(16): 1312–1315.

    Article  ADS  Google Scholar 

  11. MIURA H, QIU F, SPRING A M, et al. High thermal stability 40 GHz electro-optic polymer modulators[J]. Optics express, 2017, 25(23): 28643–28649.

    Article  ADS  Google Scholar 

  12. QIU F, HAN Y. Electro-optic polymer ring resonator modulators[Invited][J]. Chinese optics letters, 2021, 19(4): 041301.

    Article  ADS  Google Scholar 

  13. QIAN G, NIU B, ZHAO W, et al. CL-TWE Mach-Zehnder electro-optic modulator based on InP-MQW optical waveguides[J]. Chinese optics letters, 2019, 17(6): 061301.

    Article  ADS  Google Scholar 

  14. OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of lightwave technology, 2017, 35(8): 1450–1455.

    Article  ADS  Google Scholar 

  15. LIU M, YIN X, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64–67.

    Article  ADS  Google Scholar 

  16. PHARE C T, LEE Y D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature photonics, 2015, 9(8): 511–514.

    Article  ADS  Google Scholar 

  17. LIANG Z X, XU C P, ZHU A J, et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip[J]. Optik, 2020, 210: 164503.

    Article  Google Scholar 

  18. TIBALDI A, GHOMASHI M, BERTAZZI F, et al. Plasmonic-organic hybrid electro/optic Mach-Zehnder modulators: from waveguide to multiphysics modal-FDTD modeling[J]. Optics express, 2020, 28(20): 29253–29271.

    Article  ADS  Google Scholar 

  19. QI Y, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287–1320.

    Article  MathSciNet  Google Scholar 

  20. THIELE F, BRUCH F V, QUIRING V, et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J]. Optics express, 2020, 28(20): 28961–28968.

    Article  ADS  Google Scholar 

  21. PALIWAL A, SHARMA A, GUO R, et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J]. Applied physics B, 2019, 125(7): 115.

    Article  Google Scholar 

  22. ZHU D, SHAO L, YU M, et al. Integrated photonics on thin-film lithium niobate[J]. Advanced optics photonics, 2021, 13(2): 242–352.

    Article  ADS  Google Scholar 

  23. REN T, ZHANG M, WANG C, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE photonics technology letters, 2019, 31(11): 889–892.

    Article  ADS  Google Scholar 

  24. BAHADORI M, GODDARD L L, GONG S. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators[J]. Optics express, 2020, 28(9): 13731–13749.

    Article  ADS  Google Scholar 

  25. HONARDOOST A, JUNEGHANI F A, SAFIAN R, et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J]. Optics express, 2019, 27(5): 6495–6501.

    Article  ADS  Google Scholar 

  26. LIU N, ZHANG J, ZHU Z, et al. Efficient coupling between an integrated photonic waveguide and an optical fiber[J]. Optics express, 2021, 29(17): 27396–27403.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Liu.

Additional information

This work has been supported by the Science and Technology Planning Project of Hunan Province (Nos.2018JJ1033 and 2017RS3039).

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, N., Zhang, J. et al. High performance electro-optic modulator based on thin-film lithium niobate. Optoelectron. Lett. 18, 583–587 (2022). https://doi.org/10.1007/s11801-022-2049-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-022-2049-y

Document code

Navigation