Skip to main content
Log in

Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication, which has the advantages of high modulation rate, low half-wave voltage, large bandwidth, and easy integration compared with conventional bulk lithium niobate modulator. However, because the electrode gap of the lithium niobate film modulator is very narrow, when the microwave frequency gets higher, it leads to higher microwave loss, and the electro-optical performance of the modulator will be greatly reduced. Here, we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz, exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz. High-speed data transmission test has been performed, showing good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702): 483–486.

    Article  ADS  Google Scholar 

  2. PHARE C T, LEE Y H D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature photonics, 2015, 9(8): 511–514.

    Article  ADS  Google Scholar 

  3. HAN J H, BOEUF F, FUJIKATA J, et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator[J]. Nature photonics, 2017, 11(8): 486–490.

    Article  Google Scholar 

  4. LEE M, KATZ H E, ERBEN C, et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298(5597): 1401–1403.

    Article  ADS  Google Scholar 

  5. ALLOATTI L, PALMER R, DIEBOLD S, et al. 100 GHz silicon-organic hybrid modulator[J]. Light: science & applications, 2014, 3(5): e173.

    Article  Google Scholar 

  6. WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101–104.

    Article  ADS  Google Scholar 

  7. HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits−1 and beyond[J]. Nature photonics, 2019, 13: 359–364.

    Article  ADS  Google Scholar 

  8. AHMED A N R, SHI S, MERCANTE A, et al. High-efficiency lithium niobate modulator for K band operation[J]. APL photonics, 2020, 5: 091302.

    Article  ADS  Google Scholar 

  9. PRASHANTA K, CHRISTIAN R, KEVIN L, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8: 357–363.

    Article  Google Scholar 

  10. GHIONE G. Semiconductor devices for high-speed optoelectronics[M]. Oxford: Oxford University, 2009.

    Book  Google Scholar 

  11. AOKI K, KONDOU J, MITOMI O, et al. Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode[J]. Japanese journal of applied physics, 2006, 45: 8696–8698.

    Article  ADS  Google Scholar 

  12. GU J H, WU B Y. Analysis on the microwave attenuation coefficient of traveling-wave electrodes with complicated cross-sections in Ti: LiNbO3 optical modulators[J]. Acta electronica sinica, 1998, 26(6): 58–61.

    Google Scholar 

  13. RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE journal of selected topics in quantum electronics, 2018, 24(4): 1–14.

    Article  Google Scholar 

  14. FRANKEL Y, GUPTA S, VALDMANIS J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmission lines[J]. IEEE transactions on microwave theory and techniques, 1991, 39(6): 910–916.

    Article  ADS  Google Scholar 

  15. YU L Y, SHANG J M, LUO K W, et al. Design of high-speed mid-infrared electro-optic modulator based on thin film lithium niobate[J]. IEEE photonics journal, 2022, 14(2): 1–6.

    Google Scholar 

  16. ANDREW J M, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics express, 2016, 24: 15590–15595.

    Article  ADS  Google Scholar 

  17. HAN H, YANG F, LIU C, et al. High-performance electro-optical Mach-Zehnder modulators in a silicon nitride-lithium niobate thin-film hybrid platform[J]. Photonics, 2022, 9: 500.

    Article  Google Scholar 

  18. SUN S, HE M, XU M, et al. Hybrid silicon and lithium niobate modulator[J]. IEEE journal of selected topics in quantum electronics, 2021, 27(3): 1–12.

    Article  Google Scholar 

  19. PAN B C, HU J Y, HUANG Y S, et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-µm wavelength[J]. Optics express, 2021, 29: 17710–17717.

    Article  ADS  Google Scholar 

  20. CAI J, GUO C, LU C, et al. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulator[J]. IEEE photonics journal, 2021, 13(4): 1–6.

    Article  Google Scholar 

  21. ZHU D, SHAO L B, YU M, et al. Integrated photonics on thin-film lithium niobate[J]. Advances in optics and photonics, 2021, 13: 242–352.

    Article  ADS  Google Scholar 

  22. WEIGEL P O, VALDEZ F, ZHAO J, et al. Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators[J]. Journal of physics: photonics, 2021, 3(1): 012001.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaixi Chen or Wanguo Liang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the Self-deployment Project of Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No.2021ZZ104), and the Fujian Province STS Project (Nos.2020T3002 and 2022T3012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Feng, X., Chen, J. et al. Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes. Optoelectron. Lett. 20, 339–345 (2024). https://doi.org/10.1007/s11801-024-3143-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3143-0

Document code

Navigation