Skip to main content
Log in

Concentration sensor with multilayer thin film-coupled surface plasmon resonance

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A concentration sensor based on silver (Ag)/silica (SiO2)/zirconium anhydride (ZrO2) multilayer structure is proposed. Two dominant dips can be observed in the reflection spectrum, which correspond to different sensing methods. Firstly, it is demonstrated that the coupling between the surface plasmon polariton (SPP) mode and a planar waveguide mode (WGM) leads to the Fano resonance (FR). The induced bonding hybridized modes have ultra-narrow full wave at half maximum (FWHM) as well as ultra-high quality factors (Q). We can achieve a theoretical value of the refractive index sensitivity 167 times higher than conventional surface plasmon resonance (SPR) sensors with a single metal layer. Secondly, the waveguide coupling mode was examined by measuring angular spectra. A deep and sharp waveguide coupling dip was obtained. The experimental results show that with an increase in the concentration of the fill dielectric material in the surface of the system, the resonance dip exhibits a remarkable red shift, and the measured angular sensitivity is 98.04°/RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng Zhong-hao, Wang Jin-hu and Li Neng-xi, Super-lattices and Microstructures 135, 106286 (2019).

    Article  Google Scholar 

  2. Yang Tao, Guo Kang-xian and Liu Guang-hui, Superlattices and Microstructures 122, 394 (2018).

    Article  ADS  Google Scholar 

  3. Zhao Yu-ting, Gan Shuai-wei and Zhang Guang-hua, Results in Physics 14, 102477 (2019).

    Article  Google Scholar 

  4. Lin Chu-en, Chen Chii-chang and Liu Jia-hao, Results in Physics 12, 1980 (2019).

    Article  ADS  Google Scholar 

  5. Lee Hwa-seub, Seong Tae-yeon and Kim W M, Sensors & Actuators: B. Chemical 266, 311 (2018).

    Article  Google Scholar 

  6. Prajapati Y K and Akash S, Superlattices and Micro-structures 129, 152 (2019).

    Article  ADS  Google Scholar 

  7. Zainuddin N H, Fen Y W and Alwahib A A, Optik 168, 134 (2018).

    Article  ADS  Google Scholar 

  8. Zhou Jin-ru, Qi Qin-qin and Wang Chong, Biosensors and Bioelectronics 142, 111449 (2019).

    Article  Google Scholar 

  9. Zhao Yong, Tong Rui-jie and Xia Feng, Biosensors and Bioelectronics 142, 111505 (2019).

    Article  Google Scholar 

  10. Sun Peng, Wang Mei and Liu Li-li, Applied Surface Science 475, 342 (2019).

    Article  ADS  Google Scholar 

  11. Nguyen H H and Park J, Sensors 15, 10481 (2015).

    Article  ADS  Google Scholar 

  12. Klantsataya E and François A, Sensors 15, 25090 (2015).

    Article  ADS  Google Scholar 

  13. Feng Ding-yi, Zhou Wen-jun, Qiao Xue-guang and Albert J, Optics Express 24, 16456 (2016).

    Article  ADS  Google Scholar 

  14. Rouf H K and Haque T, Progress In Electromagnetics Research M, 76, 31 (2018).

    Article  Google Scholar 

  15. Xiao Jie and Tan Xiao-song, Optics Letters 41, 2478 (2016).

    Article  ADS  Google Scholar 

  16. Zhou Peng, Zheng Gai-ge, Chen Yun-yun, Xian Fen-lin and Xu Lin-hua, Superlattices and Microstructures 120, 436 (2018).

    Article  ADS  Google Scholar 

  17. Hayashi S and Dmitry V N, Applied Physics Express 8, 022201 (2015).

    Article  ADS  Google Scholar 

  18. Hayashi S and Dmitry V N, Applied Physics Letters 108, 2257 (2016).

    Google Scholar 

  19. Dmitry V N and Hayashi S, Journal of Optics 18, 065004 (2016).

    Article  ADS  Google Scholar 

  20. Zhang Xiang-li and Wang Yu-han, IEEE Photonics Journal 11, 4800808 (2019).

    Google Scholar 

  21. Wang Zhi-you, Cheng Zhi-qiang, Singh V, Zheng Zheng, Wang Yan-mei, Li Shao-peng, Song Lu-sheng and Zhu Jin-song, Analytical Chemistry 86, 1430 (2014).

    Article  Google Scholar 

  22. Stebunov Y V, Aftenieva O A, Arsenin A V and Volkov V S, ACS Applied Materials & Interfaces 7, 21727 (2015).

    Article  Google Scholar 

  23. Fano U, Physical Review 124, 1866 (1961).

    Article  ADS  Google Scholar 

  24. Hayashi S and Dmitry V N, Journal of Physics D: Applied Physics 48, 325303 (2015).

    Article  Google Scholar 

  25. Mai Wei-jie, Wang Yi-lin, Zhang Yun-yun, Cui Lu-na and Yu Li, Chinese Physics Letters 34, 024204 (2017).

    Article  ADS  Google Scholar 

  26. Qi Yun-ping, Wang Li-yuan, Zhang Yu, Zhang Ting, Zhang Bao-he, Deng Xiang-yu and Wang Xiang-xian, Chinese Physics B 29, 067303 (2020).

    Article  ADS  Google Scholar 

  27. Wu Xi-jun, Dou Ceng, Xu Wei, Zhang Guang-biao, Tian Rui-ling, Liu Hai-long, Chinese Physics B 28, 014204 (2019).

    Article  ADS  Google Scholar 

  28. Liu Zhao-wei, Durant Stephane, Lee H J, Pikus Y, Fang N, Xiong Yi, Sun Cheng and Zhang Xiang, Nano Letters 7, 403 (2007).

    Article  ADS  Google Scholar 

  29. Abayzeed S A, Smith R J, Webb K F, Somekh M G and See C W, Sensors & Actuators: B. Chemical 235, 627 (2016).

    Article  Google Scholar 

  30. Li Chung-tien, Yen Ta-jen and Chen How-foo, Optics Express 17, 20771 (2009).

    Article  ADS  Google Scholar 

  31. Dmitry V N and Zouheir S, Plasmonics 8, 1585 (2013).

    Article  Google Scholar 

  32. Kong Wei-jing, Zheng Zheng and Wan Yu-hang, Sensors & Actuators: B. Chemical 193, 467 (2014).

    Article  Google Scholar 

  33. Droulias S and Bougas L, ACS Photonics 6, 1485 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai-ge Zheng  (郑改革).

Additional information

This work has been supported by the National Science Foundation of China (No.41675154), and the Natural Science Foundation of Jiangsu Province (No.BK20191396).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Li, Hj. & Zheng, Gg. Concentration sensor with multilayer thin film-coupled surface plasmon resonance. Optoelectron. Lett. 17, 289–293 (2021). https://doi.org/10.1007/s11801-021-0088-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0088-4

Document code

Navigation