Skip to main content
Log in

Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Figures of merit are introduced for estimation of achievable resolution of surface plasmon (SP) sensors by modulation type. The resolution of SP sensors in the Kretschmann’s geometry is estimated by numerical simulation for combinations of silver (Ag), copper (Cu), aluminum (Al), chromium, and titanium layers with a gold (Au) layer in the ultraviolet (UV), visible, and infrared (IR) regions in cases of detecting the change of the refractive index of water and the presence of an adsorption layer in water. SP biosensors with angular modulation based on Al exhibit low resolution in the UV region; Ag, Au, and Cu biosensors show best resolution in the visible region. Biosensors with intensity modulation demonstrate high performance in the near IR by Ag, Au, and Cu metals, and in the UV by Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Homola J, Dostálek J (2006) Surface plasmon resonance based sensors. Springer, Berlin

    Book  Google Scholar 

  2. Schasfoort RBM, Tudos AJ (eds) (2008) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Kukanskis K, Elkind J, Melendez J, Murphy T, Miller G, Garner H (1999) Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Anal Biochem 274(1):7–17

    Article  CAS  Google Scholar 

  4. Sekkat Z, Wood J, Geerts Y, Knoll W (1996) Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers. Langmuir 12(12):2976–2980

    Article  CAS  Google Scholar 

  5. Bartual-Murgui C, Salmon L, Akou A, Molnar G, Mahfoud T, Bousseksou A, Thibault C, Sekkat Z, Real JA (2011) High quality nano-patterned thin films of the coordination compound Fe(pyrazine)[Pt(CN) < sub > 4</sub>] deposited layer-by-layer. New J Chem 35(10):2089–2094

    Article  CAS  Google Scholar 

  6. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  7. Hu C, Liu D (2010) High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer. Mod Appl Sci 4(6(2)):8–13

    CAS  Google Scholar 

  8. Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett 34(6):749–751

    Article  CAS  Google Scholar 

  9. Lee KS, Lee TS, Kim WM, Son JM, Jeong DY (2010) Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach. Sensors 10(12):11390–11399

    Article  CAS  Google Scholar 

  10. Ong BH, Yuan X, Tjin SC, Zhang J, Ng HM (2006) Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens Actuators B Chem 114(2):1028–1034

    Article  CAS  Google Scholar 

  11. Cai D, Lu Y, Lin K, Wang P, Ming H (2008) Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Opt Express 16(19):14597–14602

    Article  Google Scholar 

  12. Dostâalek J, Kasry A, Knoll W (2007) Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics 2(3):97–106

    Article  Google Scholar 

  13. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B Chem 54(1/2):16–24

    Article  CAS  Google Scholar 

  14. Murray-Methot MP, Ratel M, Masson JF (2010) Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J Phys Chem C 114(18):8268–8275

    Article  CAS  Google Scholar 

  15. Becker J, Jakab A, Sonnichsen C, Trugler A, Hohenester U (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  16. Lin K, Lu Y, Chen J, Zheng R, Wang P, Ming H (2008) Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt Express 16(23):18599–18604

    Article  CAS  Google Scholar 

  17. Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505–16517

    Article  CAS  Google Scholar 

  18. Wang X, Jefferson M, Hobbs PC, Risk WP, Feller BE, Miller RD, Knoesen A (2011) Shot-noise limited detection for surface plasmon sensing. Opt Express 19(1):107–117

    Article  Google Scholar 

  19. Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sens Actuators A Phys 125(2):296–303

    Article  CAS  Google Scholar 

  20. Nesterenko DV, Saif Ur R, Sekkat Z (2012) Surface plasmon sensing with different metals in single and double layer configurations. Appl Opt 51(27):6673–6682

    Article  CAS  Google Scholar 

  21. Ran B, Lipson SG (2006) Comparison between sensitivities of phase and intensity detection in surface plasmon resonance. Opt Express 14(12):5641–5650

    Article  CAS  Google Scholar 

  22. Goddard NJ, Pollard-Knight D, Maule CH (1994) Real-time biomolecular interaction analysis using the resonant mirror sensor. Analyst 119(4)

  23. Nagpal P, Norris DJ, Lindquist NC, Oh SH (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Sci 325(5940):594–597

    Article  CAS  Google Scholar 

  24. Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13(9):1870–1876

    Article  Google Scholar 

  25. Taflove A, Hagness SC (2005) Computational electrodynamics : the finite-difference time-domain method. Artech House, Boston

    Google Scholar 

  26. Jin JM (1993) The finite element method in electromagnetics. Wiley, New York

    Google Scholar 

  27. Nesterenko DV (2011) Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion. Optoelectron Instrum Data Process 47(1):68–75

    Article  Google Scholar 

  28. Yeh P, Yariv A, Hong C-S (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am J Opt Soc Am 67(4)

  29. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  30. Rakic AD (1995) Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl Opt 34(22):4755–4767

    Article  CAS  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  32. Leveque G, Olson CG, Lynch DW, Ames L, Department of Physics ISUAI (1983) Reflectance spectra and dielectric functions for Ag in the region of interband transitions. Phys Rev B: Condens Matter 27(8):4654–4660

    Article  CAS  Google Scholar 

  33. Winsemius P, Kampen FF, Lengkeek HP, Went CG (1976) Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F: Metal Phys 6(8):1583–1606

    Article  CAS  Google Scholar 

  34. Segelstein DJ (1981) The complex refractive index of water. M.S. thesis, University of Missouri - Kansas City, Kansas City, Missouri

  35. Refractive index of E-BK7 (Hikari), Refractive index database site. http://refractiveindex.info/?group=HIKARI&material=E-BK7. Accessed 2 Jan 2013

  36. Fujimaki M, Awazu K (2009) Development of high-sensitivity molecular adsorption detection sensors. Synthesiology 2(2):142–153

    Article  Google Scholar 

  37. Ekgasit S, Yu F, Knoll W (2005) Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy. Sensors and actuators B Chem 104(2):294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Nesterenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterenko, D.V., Sekkat, Z. Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions. Plasmonics 8, 1585–1595 (2013). https://doi.org/10.1007/s11468-013-9575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9575-1

Keywords

Navigation