Skip to main content
Log in

Embedding of Biological Regulatory Networks and Property Preservation

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In the course of understanding biological regulatory networks (BRN), scientists usually start by studying small BRNs that they believe to be of particular importance to represent a biological function, and then, embed them in a larger network. Such a reduction can lead to neglect relevant regulations and to study a network whose properties can be very different from the properties of this network viewed as a part of the whole. In this paper we study, from a logical point of view, on which conditions concerning both networks, properties can be inherited by BRNs from sub-BRNs. We give some conditions on the nature of the network embeddings ensuring that dynamic properties on the embedded sub-BRNs are preserved at the level of the whole BRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiguier, M., Le Gall, P., Mabrouki, M.: A formal definition of complex software, 3rd International Conference on Software Engineering Advances, IEEE Computer Society Press (2008)

  2. Aiguier M., Le Gall P., Mabrouki M.: Complex software systems: formalization and applications. Int. J. Adv. Softw. 2(1), 47–62 (2009)

    Google Scholar 

  3. Batt G., Belta C., Weiss R.: Temporal logic analysis of gene networks under parameter uncertainty. IEEE Trans. Autom. Control 53(z1), 215–229 (2008)

    Article  MathSciNet  Google Scholar 

  4. Batt G., Ropers D., De Jong H., Geiselmann J., Mateescu R., Page M., Schneider D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21(Suppl 1), i19 (2005)

    Article  Google Scholar 

  5. Bernot G., Comet J.P., Richard A., Guespin J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bernot G., Tahi F.: Behaviour preservation of a biological regulatory network when embedded into a larger network. Fundam. Inf. 91(3–4), 463–485 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Corblin F., Fanchon E., Trilling L.: Applications of a formal approach to decipher discrete genetic networks. BMC Bioinform. 11, 385 (2010)

    Article  Google Scholar 

  8. Corblin F., Tripodi S., Fanchon E., Ropers D., Trilling L.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98(2), 91–104 (2009)

    Article  Google Scholar 

  9. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. De Jong H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  11. De Jong H., Geiselmann J., Hernandez C., Page M.: network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)

    Article  Google Scholar 

  12. De Jong H., Gouzé J.L., Hernandez C., Page M., Sari T., Geiselmann J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66(2), 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  13. De Nicola R., Vaandrager F.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Emerson E.A.: Handbook of theoretical computer science, volume b: formal models and semantics ch. Temporal and modal logic, pp. 995–1072. MIT Press, Cambridge (1990)

    Google Scholar 

  15. Fages, F., Soliman, S.: Formal cell biology in biocham. Formal Methods for Computational Systems Biology. In: 8th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2008, Advanced Lectures. Lecture Notes in Computer Science, vol. 5016, pp. 54–80. Springer, Berlin (2008)

  16. Gama-Castro, S., Salgado, H., Peralta-Gil, M., Santos-Zavaleta, A. Muniz-Rascado, L., Solano-Lira, H., Jimenez-Jacinto, V., Weiss, V., García-Sotelo, J.S., López-Fuentes, A., Porrón-Sotelo, L., Alquicira-Hernández, S., Medina-Rivera, A., Irma Martínez-Flores, I., Alquicira-Hernández, K., Martínez-Adame, R., Bonavides-Martínez, C., Miranda-Ríos, J., Huerta, A.M., Mendoza-Vargas, A., Collado-Torres, L., Taboada, B., Vega-Alvarado, L., Olvera, M., Olvera, L., Grande, R., Morett, E., Collado-Vides, J.: Regulondb version 7.0: transcriptional regulation of Escherichia coli k-12 integrated within genetic sensory response units (gensor units)., Nucleic Acids Res 39 (2011), no. Database issue, D98–105, http://regulondb.ccg.unam.mx/

  17. Giacomantonio C.E., Goodhill G.J., Friston K.J.: A boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput. Biol. 6(9), 251–262 (2010)

    Article  Google Scholar 

  18. Glabbeck, V.R., Weijland, W.P.: Refinement in branching time semantics. Proc. IFIP Conf. 613–18 (1989)

  19. Glass L., Kauffman S.A.: The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  20. Goguen J.A., Burstall R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jacob F., Monod J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)

    Article  Google Scholar 

  22. Khalis Z., Comet J.P., Richard A., Bernot G.: The SMBioNet method for discovering models of gene regulatory networks. Genes Genomes Genomics 3(special issue 1), 15–22 (2009)

    Google Scholar 

  23. Mabrouki M., Aiguier M., Comet J.P., Le Gall P.: Property preservation along embedding of biological regulatory networks AB. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Lecture Notes in Computer Science, vol. 5147, pp. 125–138. Springer, Berlin (2008)

    Google Scholar 

  24. Mateescu R., Sighireanu M.: Efficient on-the-fly model checking for regular alternation-free mu-calculus. Sci. Comput. Program. 46, 255–281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mateus D., Gallois J.-P., Comet J.-P., Le Gall P.: Symbolic modeling of genetic regulatory networks. J. Bioinform. Comput. Biol. 5(2B), 627–640 (2007)

    Article  Google Scholar 

  26. Schlitt T., Brazma A.: Current approaches to gene regulatory network modelling. BMC bioinform. 8(Suppl 6),–S9 (2007)

    Article  Google Scholar 

  27. Siebert H.: Deriving behavior of boolean bioregulatory networks from subnetwork dynamics. Math. Comput. Sci. 2, 421–442 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Thieffry D.: From global expression data to gene networks. BioEssays 21(11), 895–899 (1999)

    Article  MathSciNet  Google Scholar 

  29. Thomas R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73(4), 631–656 (1978)

    Article  Google Scholar 

  30. Thomas R., d’Ari R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  31. Wehrheim, H.: Inheritance of temporal logic properties. FMOODS, pp. 79–93 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mbarka Mabrouki.

Additional information

This work was performed within the European project GENNETEC (GENetic NeTworks: Emergence and Complexity) STREP 34952.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabrouki, M., Aiguier, M., Comet, JP. et al. Embedding of Biological Regulatory Networks and Property Preservation. Math.Comput.Sci. 5, 263–288 (2011). https://doi.org/10.1007/s11786-011-0092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-011-0092-3

Keywords

Mathematics Subject Classification (2000)

Navigation