Skip to main content

Properties of Biological Networks

  • Chapter
Systems Biology

Abstract

Relationships in biological systems are frequently represented as networks with the goal of abstracting a system’s components to nodes and connections between them. While such representations allow modeling and analysis using abstract computational methods, there are certain aspects of such modeling that are particularly important for biological networks. We explore features that are deemed necessary for living and evolving organisms and reflect the evolutionary origins of biological networks. Biological networks are robust to random alterations of their nodes and connections yet may be vulnerable to attacks targeting essential genes. Biological systems are dynamic and modular, and so are their network representations. Comparisons of biological networks across species can reveal conserved and evolved regions and shed light on evolutionary events and processes. It is important to understand networks as a whole, as significant insights might emerge from the network approach that cannot be attributed to properties of the nodes alone. Network-based approaches have a potential to significantly increase our understanding of biological systems and consequently, our understanding and treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(MMS):

Methyl Methanesulfonate

(ODEs):

Ordinary Differential Equations

(TCA):

Tricarboxylic Acid

(PPI):

Protein-Protein Interactions

(GO):

Gene Ontology

(NP):

Nondeterministic Polynomial time

(GSEA):

Gene-Set Enrichment Analysis

(GWAS):

Genome-Wide Association Studies

References

  1. Junker BH, Schreiber F (2008) Analysis of biological networks. Wiley series on bioinformatics, Wiley-Interscience

    Google Scholar 

  2. Holland JH (1995) Hidden order: how adaptation builds complexity. Helix books, Addison-Wesley, Reading

    Google Scholar 

  3. Holland JH (1998) Emergence: from chaos to order. Helix books, Addison-Wesley, Reading

    Google Scholar 

  4. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    PubMed  Google Scholar 

  5. Price DDS (1976) A general theory of bibliometric and other cumulative advantage processes. J Am Soc Inf Sci 27(5):292–306. doi:10.1002/asi.4630270505

    Google Scholar 

  6. Ravasz E, Barabasi AL (2003) Hierarchical organization in complex networks. Phys Rev E 67(2 Pt 2):026112

    Google Scholar 

  7. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555. doi:10.1126/science.1073374

    CAS  PubMed  Google Scholar 

  8. Chen LL, Blumm N, Christakis NA, Barabasi AL, Deisboeck TS (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101(5):749–758. doi:10.1038/sj.bjc.6605214

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee DS, Burd H, Liu J, Almaas E, Wiest O, Barabasi AL, Oltvai ZN, Kapatral V (2009) Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J Bacteriol 191(12):4015–4024. doi:10.1128/JB.01743-08

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLoS Comput Biol 5(4):e1000353. doi:10.1371/journal.pcbi.1000353

    PubMed Central  PubMed  Google Scholar 

  11. Barabasi AL (2009) Scale-free networks: a decade and beyond. Science 325(5939):412–413. doi:10.1126/science.1173299

    CAS  PubMed  Google Scholar 

  12. Lenski RE, Barrick JE, Ofria C (2006) Balancing robustness and evolvability. PLoS Biol 4(12):e428. doi:10.1371/journal.pbio.0040428

    PubMed Central  PubMed  Google Scholar 

  13. Lehner B (2010) Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast. PLoS ONE 5(2):e9035. doi:10.1371/journal.pone.0009035

    PubMed Central  PubMed  Google Scholar 

  14. Dixon SJ, Andrews BJ, Boone C (2009) Exploring the conservation of synthetic lethal genetic interaction networks. Commun Integr Biol 2(2):78–81

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lehner B (2007) Modelling genotype-phenotype relationships and human disease with genetic interaction networks. J Exp Biol 210(Pt 9):1559–1566. doi:10.1242/jeb.002311

    PubMed  Google Scholar 

  16. Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183(4676):1654–1655

    CAS  PubMed  Google Scholar 

  17. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38(8):896–903. doi:10.1038/ng1844

    CAS  PubMed  Google Scholar 

  18. Tischler J, Lehner B, Fraser AG (2008) Evolutionary plasticity of genetic interaction networks. Nat Genet 40(4):390–391. doi:10.1038/ng.114

    CAS  PubMed  Google Scholar 

  19. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917. doi:10.1038/43199

    CAS  PubMed  Google Scholar 

  20. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. doi:10.1038/nrg1272

    CAS  PubMed  Google Scholar 

  21. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–192. doi:10.1038/35018085

    Google Scholar 

  22. Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of complex networks. Phys Rev E 65(5 Pt 2):056109

    Google Scholar 

  24. Chen BS, Wang YC, Wu WS, Li WH (2005) A new measure of the robustness of biochemical networks. Bioinformatics 21(11):2698–2705. doi:10.1093/bioinformatics/bti348

    CAS  PubMed  Google Scholar 

  25. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715):168–171. doi:10.1038/16483

    CAS  PubMed  Google Scholar 

  26. Spiro Z, Kovacs IA, Csermely P (2008) Drug-therapy networks and the prediction of novel drug targets. J Biol 7(6):20. doi:10.1186/jbiol81

    PubMed Central  PubMed  Google Scholar 

  27. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26(4):178–182. doi:10.1016/j.tips.2005.02.007

    CAS  PubMed  Google Scholar 

  28. Ma’ayan A, Jenkins SL, Goldfarb J, Iyengar R (2007) Network analysis of FDA approved drugs and their targets. Mt Sinai J Med 74(1):27–32. doi:10.1002/msj.20002

    PubMed Central  PubMed  Google Scholar 

  29. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690. doi:10.1073/pnas.0701361104

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Dancik V, Seiler KP, Young DW, Schreiber SL, Clemons PA (2010) Distinct biological network properties between the targets of natural products and disease genes. J Am Chem Soc 132(27):9259–9261

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Anvar SY, Tucker A, Vinciotti V, Venema A, van Ommen GJ, van der Maarel SM, Raz V, t Hoen PA (2011) Interspecies translation of disease networks increases robustness and predictive accuracy. PLoS Comput Biol 7(11):e1002258. doi:10.1371/journal.pcbi.1002258

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    CAS  PubMed  Google Scholar 

  33. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    CAS  PubMed  Google Scholar 

  34. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913. doi:10.1126/science.1065103

    CAS  PubMed  Google Scholar 

  35. Schuler A, Bornberg-Bauer E (2011) The evolution of protein interaction networks. Methods Mol Biol 696:273–289. doi:10.1007/978-94-007-6803-1_17

    PubMed  Google Scholar 

  36. Pache RA, Babu MM, Aloy P (2009) Exploiting gene deletion fitness effects in yeast to understand the modular architecture of protein complexes under different growth conditions. BMC Syst Biol 3:74. doi:10.1186/1752-0509-3-74

    PubMed Central  PubMed  Google Scholar 

  37. Holme P (2011) Metabolic robustness and network modularity: a model study. PLoS ONE 6(2):e16605. doi:10.1371/journal.pone.0016605

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Grigorov MG (2005) Global properties of biological networks. Drug Discovery Today 10(5):365–372. doi:10.1016/S1359-6446(05)03369-6

    CAS  PubMed  Google Scholar 

  39. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268(1478):1803–1810. doi:10.1098/rspb.2001.1711

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Norris V, Raine D (2006) On the utility of scale-free networks. BioEssays News Rev Mol Cell Dev Biol 28(5):563–564. doi:10.1002/bies.20415

    Google Scholar 

  41. Ma H, Zeng AP (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2):270–277

    CAS  PubMed  Google Scholar 

  42. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18(2):351–361

    CAS  PubMed  Google Scholar 

  43. Kaiser M, Hilgetag CC (2004) Edge vulnerability in neural and metabolic networks. Biol Cybern 90(5):311–317. doi:10.1007/s00422-004-0479-1

    PubMed  Google Scholar 

  44. Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guenole A, van Attikum H, Shokat KM, Kolodner RD, Huh WK, Aebersold R, Keogh MC, Krogan NJ, Ideker T (2010) Rewiring of genetic networks in response to DNA damage. Science 330(6009):1385–1389. doi:10.1126/science.1195618

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312. doi:10.1038/nature02782

    CAS  PubMed  Google Scholar 

  46. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11(1):15–29. doi:10.1093/bib/bbp057

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405. doi:10.1146/annurev-biochem-072909-100424

    CAS  PubMed  Google Scholar 

  48. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072):1103–1106. doi:10.1126/science.1206848

    CAS  PubMed  Google Scholar 

  49. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mader U, Nicolas P, Piersma S, Rugheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, Jarmer H, Klipp E, Leduc A, Lewis P, Molina F, Noirot P, Peres S, Pigeonneau N, Pohl S, Rasmussen S, Rinn B, Schaffer M, Schnidder J, Schwikowski B, Van Dijl JM, Veiga P, Walsh S, Wilkinson AJ, Stelling J, Aymerich S, Sauer U (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103. doi:10.1126/science.1206871

    CAS  PubMed  Google Scholar 

  50. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83(3):349–360

    CAS  PubMed  Google Scholar 

  51. Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22(14):3486–3492. doi:10.1093/emboj/cdg359

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Das J, Mohammed J, Yu H (2012) Genome-scale analysis of interaction dynamics reveals organization of biological networks. Bioinformatics 28(14):1873–1878. doi:10.1093/bioinformatics/bts283

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Karlebach G, Shamir R (2010) Minimally perturbing a gene regulatory network to avoid a disease phenotype: the glioma network as a test case. BMC Syst Biol 4:15. doi:10.1186/1752-0509-4-15

    PubMed Central  PubMed  Google Scholar 

  54. Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    CAS  PubMed  Google Scholar 

  55. Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM, Yung WK, Zhang W (1999) Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59(17):4228–4232

    CAS  PubMed  Google Scholar 

  56. Liu YY, Slotine JJ, Barabasi AL (2011) Controllability of complex networks. Nature 473(7346):167–173. doi:10.1038/nature10011

    CAS  PubMed  Google Scholar 

  57. Rzhetsky A, Koike T, Kalachikov S, Gomez SM, Krauthammer M, Kaplan SH, Kra P, Russo JJ, Friedman C (2000) A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16(12):1120–1128

    CAS  PubMed  Google Scholar 

  58. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput 6:459–470

    Google Scholar 

  59. Peleg M, Yeh I, Altman RB (2002) Modelling biological processes using workflow and Petri net models. Bioinformatics 18(6):825–837

    CAS  PubMed  Google Scholar 

  60. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7. doi:10.1186/1471-2105-7-S1-S7

    PubMed Central  PubMed  Google Scholar 

  61. You Ch, Holder LB, Cook DJ (2009) Learning patterns in the dynamics of biological networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 977–986. doi:10.1145/1557019.1557125

  62. Zou C, Denby KJ, Feng J (2009) Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics 10:122. doi:10.1186/1471-2105-10-122

    PubMed Central  PubMed  Google Scholar 

  63. Zou C, Ladroue C, Guo S, Feng J (2010) Identifying interactions in the time and frequency domains in local and global networks—a Granger causality approach. BMC Bioinformatics 11:337. doi:10.1186/1471-2105-11-337

    PubMed Central  PubMed  Google Scholar 

  64. Nam H, Lee K, Lee D (2009) Identification of temporal association rules from time-series microarray data sets. BMC Bioinformatics 10(Suppl 3):S6. doi:10.1186/1471-2105-10-S3-S6

    PubMed Central  PubMed  Google Scholar 

  65. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103. doi:10.1089/10665270252833208

    PubMed  Google Scholar 

  66. Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25(11):1239–1249. doi:10.1038/nbt1356

    CAS  PubMed  Google Scholar 

  67. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780. doi:10.1038/nrm2503

    CAS  PubMed  Google Scholar 

  68. Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in systems biology. AMB Express 1:45. doi:10.1186/2191-0855-1-45

    PubMed Central  PubMed  Google Scholar 

  69. Tenazinha N, Vinga S (2011) A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans Comput Biol Bioinform 8(4):943–958. doi:10.1109/TCBB.2010.117

    PubMed  Google Scholar 

  70. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    CAS  PubMed  Google Scholar 

  71. Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med (Berl) 77(6):469–480

    CAS  Google Scholar 

  72. Kwon YK, Cho KH (2007) Boolean dynamics of biological networks with multiple coupled feedback loops. Biophys J 92(8):2975–2981. doi:10.1529/biophysj.106.097097

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Szallasi Z, Liang S (1998) Modeling the normal and neoplastic cell cycle with “realistic Boolean genetic networks”: their application for understanding carcinogenesis and assessing therapeutic strategies. Pac Symp Biocomput 3:66–76

    Google Scholar 

  74. Akutsu T, Kuhara S, Maruyama O, Miyano S (1998) A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inform Ser Workshop Genome Inform 9:151–160

    CAS  PubMed  Google Scholar 

  75. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2):e1672. doi:10.1371/journal.pone.0001672

    PubMed Central  PubMed  Google Scholar 

  76. Jack J, Wambaugh JF, Shah I (2011) Simulating quantitative cellular responses using asynchronous threshold Boolean network ensembles. BMC Syst Biol 5:109. doi:10.1186/1752-0509-5-109

    PubMed Central  PubMed  Google Scholar 

  77. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331. doi:10.1038/msb.2009.87

    PubMed Central  PubMed  Google Scholar 

  78. Rodriguez A, Sosa D, Torres L, Molina B, Frias S, Mendoza L (2012) A Boolean network model of the FA/BRCA pathway. Bioinformatics 28(6):858–866. doi:10.1093/bioinformatics/bts036

    CAS  PubMed  Google Scholar 

  79. Handorf T, Klipp E (2012) Modeling mechanistic biological networks: an advanced Boolean approach. Bioinformatics 28(4):557–563. doi:10.1093/bioinformatics/btr697

    CAS  PubMed  Google Scholar 

  80. Grzegorczyk M (2010) An introduction to Gaussian Bayesian networks. Methods Mol Biol 662:121–147. doi:10.1007/978-94-007-6803-1_6

    CAS  PubMed  Google Scholar 

  81. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620. doi:10.1089/106652700750050961

    CAS  PubMed  Google Scholar 

  82. Chickering D (1996) Learning Bayesian networks is NP-complete. In: Fisher D, Lenz H (eds) Learning from data: artificial intelligence and statistics V. Springer, New York, pp 121–130

    Google Scholar 

  83. Pe’er D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl 1):S215–S224

    PubMed  Google Scholar 

  84. Ong IM, Glasner JD, Page D (2002) Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18(Suppl 1): S241–248

    Google Scholar 

  85. Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche-Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl 2): ii138–ii148

    Google Scholar 

  86. Li P, Zhang C, Perkins EJ, Gong P, Deng Y (2007) Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8(Suppl 7):S13. doi:10.1186/1471-2105-8-S7-S13

    PubMed Central  PubMed  Google Scholar 

  87. Yan W, Zhu H, Yang Y, Chen J, Zhang Y, Shen B (2010) Effects of time point measurement on the reconstruction of gene regulatory networks. Molecules 15(8):5354–5368. doi:10.3390/molecules15085354

    CAS  PubMed  Google Scholar 

  88. Bock M, Ogishima S, Tanaka H, Kramer S, Kaderali L (2012) Hub-centered gene network reconstruction using automatic relevance determination. PLoS ONE 7(5):e35077. doi:10.1371/journal.pone.0035077

    PubMed Central  PubMed  Google Scholar 

  89. Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361–1372. doi:10.1093/bioinformatics/bth093

    CAS  PubMed  Google Scholar 

  90. Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3):349–356. doi:10.1093/bioinformatics/bti014

    CAS  PubMed  Google Scholar 

  91. Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Bio Systems 75(1–3):57–65. doi:10.1016/j.biosystems.2004.03.004

    CAS  PubMed  Google Scholar 

  92. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Google Scholar 

  93. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. Proc Int Conf Intell Syst Mol Biol 1:328–336

    CAS  PubMed  Google Scholar 

  94. Reddy VN, Liebman MN, Mavrovouniotis ML (1996) Qualitative analysis of biochemical reaction systems. Comput Biol Med 26(1):9–24

    CAS  PubMed  Google Scholar 

  95. Koch I, Junker BH, Heiner M (2005) Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7):1219–1226. doi:10.1093/bioinformatics/bti145

    CAS  PubMed  Google Scholar 

  96. D-W DING, Ln LI (2009) Modeling and analyzing the metabolism of riboflavin production using Petri nets. J Biol Syst (JBS) 17(03):479–490. doi:10.1142/S021833900900296X

    Google Scholar 

  97. Ruths D, Muller M, Tseng JT, Nakhleh L, Ram PT (2008) The signaling Petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput Biol 4(2):e1000005. doi:10.1371/journal.pcbi.1000005

    PubMed Central  PubMed  Google Scholar 

  98. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7:482. doi:10.1186/1471-2105-7-482

    PubMed Central  PubMed  Google Scholar 

  99. Hardy S, Robillard PN (2008) Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 24(2):209–217. doi:10.1093/bioinformatics/btm560

    CAS  PubMed  Google Scholar 

  100. Jin G, Zhao H, Zhou X, Wong ST (2011) An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 27(13):i310–i316. doi:10.1093/bioinformatics/btr202

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci U S A 95(12):6750–6755

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Matsuno H, Doi A, Nagasaki M, Miyano S (2000) Hybrid Petri net representation of gene regulatory network. Pac Symp Biocomput 5:341–352

    Google Scholar 

  103. Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003) Biopathways representation and simulation on hybrid functional Petri net. In Silico Biol 3(3):389–404

    CAS  PubMed  Google Scholar 

  104. Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S (2004) Constructing biological pathway models with hybrid functional Petri nets. In Silico Biol 4(3):271–291

    CAS  PubMed  Google Scholar 

  105. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219. doi:10.1093/bib/bbm029

    CAS  PubMed  Google Scholar 

  106. Peleg M, Rubin D, Altman RB (2005) Using Petri net tools to study properties and dynamics of biological systems. J Am Med Inform Assoc 12(2):181–199. doi:10.1197/jamia.M1637

    PubMed Central  PubMed  Google Scholar 

  107. Breitling R, Gilbert D, Heiner M, Orton R (2008) A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 9(5):404–421. doi:10.1093/bib/bbn026

    CAS  PubMed  Google Scholar 

  108. Moisset P, Vaisman D, Cintolesi A, Urrutia J, Rapaport I, Andrews BA, Asenjo JA (2012) Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Biotechnol Bioeng. doi:10.1002/bit.24503

    PubMed  Google Scholar 

  109. Zhang Y, Li P, Huang GM (2012) Quantifying dynamic stability of genetic memory circuits. IEEE/ACM Trans Comput Biol Bioinform 9(3):871–884. doi:10.1109/TCBB.2011.132

    PubMed  Google Scholar 

  110. Liu X, Niranjan M (2012) State and parameter estimation of the heat shock response system using Kalman and particle filters. Bioinformatics 28(11):1501–1507. doi:10.1093/bioinformatics/bts161

    PubMed  Google Scholar 

  111. Venkatesh KV, Bhartiya S, Ruhela A (2004) Multiple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett 563(1–3):234–240. doi:10.1016/S0014-5793(04)00310-2

    CAS  PubMed  Google Scholar 

  112. Radde N (2012) Analyzing fixed points of intracellular regulation networks with interrelated feedback topology. BMC Syst Biol 6(1):57. doi:10.1186/1752-0509-6-57

    PubMed Central  PubMed  Google Scholar 

  113. Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 4:29–40

    Google Scholar 

  114. de Hoon MJ, Imoto S, Kobayashi K, Ogasawara N, Miyano S (2003) Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput 8:17–28

    Google Scholar 

  115. Soliman S, Heiner M (2010) A unique transformation from ordinary differential equations to reaction networks. PLoS ONE 5(12):e14284. doi:10.1371/journal.pone.0014284

    PubMed Central  PubMed  Google Scholar 

  116. Liu B, Zhang J, Tan PY, Hsu D, Blom AM, Leong B, Sethi S, Ho B, Ding JL, Thiagarajan PS (2011) A computational and experimental study of the regulatory mechanisms of the complement system. PLoS Comput Biol 7(1):e1001059. doi:10.1371/journal.pcbi.1001059

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Li Z, Li P, Krishnan A, Liu J (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27(19):2686–2691. doi:10.1093/bioinformatics/btr454

    CAS  PubMed  Google Scholar 

  118. Mazur J, Ritter D, Reinelt G, Kaderali L (2009) Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinformatics 10:448. doi:10.1186/1471-2105-10-448

    PubMed Central  PubMed  Google Scholar 

  119. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133. doi:10.1006/jtbi.1993.1007

    CAS  PubMed  Google Scholar 

  120. Walker DC, Southgate J (2009) The virtual cell–a candidate co-ordinator for ‘middle-out’ modelling of biological systems. Brief Bioinform 10(4):450–461. doi:10.1093/bib/bbp010

    CAS  PubMed  Google Scholar 

  121. Bonchev D, Thomas S, Apte A, Kier LB (2010) Cellular automata modelling of biomolecular networks dynamics. SAR QSAR Environ Res 21(1):77–102. doi:10.1080/10629360903568580

    CAS  PubMed  Google Scholar 

  122. van Ballegooijen WM, Boerlijst MC (2004) Emergent trade-offs and selection for outbreak frequency in spatial epidemics. Proc Natl Acad Sci U S A 101(52):18246–18250. doi:10.1073/pnas.0405682101

    PubMed Central  PubMed  Google Scholar 

  123. Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol 2(3):393–406

    CAS  PubMed  Google Scholar 

  124. Moreira J, Deutsch A (2002) Cellular automaton models of tumor development: a critical review. Advances in complex systems (ACS) 05 (02n03): 247–267. doi:10.1142/S0219525902000572

  125. Goltsev AV, de Abreu FV, Dorogovtsev SN, Mendes JF (2010) Stochastic cellular automata model of neural networks. Phys Rev E 81(6 Pt 1):061921

    CAS  Google Scholar 

  126. Souza-e-Silva H, Savino W, Feijoo RA, Vasconcelos AT (2009) A cellular automata-based mathematical model for thymocyte development. PLoS ONE 4(12):e8233. doi:10.1371/journal.pone.0008233

    PubMed Central  PubMed  Google Scholar 

  127. Vladimirov N, Traub RD, Tu Y (2011) Wave speed in excitable random networks with spatially constrained connections. PLoS ONE 6(6):e20536. doi:10.1371/journal.pone.0020536

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wishart DS, Yang R, Arndt D, Tang P, Cruz J (2005) Dynamic cellular automata: an alternative approach to cellular simulation. In Silico Biol 5(2):139–161

    CAS  PubMed  Google Scholar 

  129. Deroulers C, Aubert M, Badoual M, Grammaticos B (2009) Modeling tumor cell migration: from microscopic to macroscopic models. Phys Rev E 79(3 Pt 1):031917

    Google Scholar 

  130. Kavousanakis ME, Liu P, Boudouvis AG, Lowengrub J, Kevrekidis IG (2012) Efficient coarse simulation of a growing avascular tumor. Phys Rev E 85(3 Pt 1):031912

    Google Scholar 

  131. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A 100(26):15522–15527. doi:10.1073/pnas.2136632100

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52. doi:10.1038/35011540

    CAS  PubMed  Google Scholar 

  134. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18(12):1257–1261. doi:10.1038/82360

    CAS  PubMed  Google Scholar 

  135. Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci U S A 101(9):2981–2986. doi:10.1073/pnas.0308661100

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176. doi:10.1038/ng1165

    CAS  PubMed  Google Scholar 

  137. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636. doi:10.1038/nature04532

    CAS  PubMed  Google Scholar 

  138. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327(5964):425–431. doi:10.1126/science.1180823

    CAS  PubMed  Google Scholar 

  139. Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 21(6):697–700. doi:10.1038/nbt825

    CAS  PubMed  Google Scholar 

  140. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306(5701):1555–1558. doi:10.1126/science.1099511

    CAS  PubMed  Google Scholar 

  141. Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JD, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, Li N, Mani R, Hyman AA, Sonnichsen B, Echeverri CJ, Roth FP, Vidal M, Piano F (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436(7052):861–865. doi:10.1038/nature03876

    CAS  PubMed  Google Scholar 

  142. Zhou X, Kao MC, Wong WH (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A 99(20):12783–12788. doi:10.1073/pnas.192159399

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13):1623–1630. doi:10.1093/bioinformatics/btl145

    CAS  PubMed  Google Scholar 

  144. Yang P, Li X, Wu M, Kwoh CK, Ng SK (2011) Inferring gene-phenotype associations via global protein complex network propagation. PLoS ONE 6(7):e21502. doi:10.1371/journal.pone.0021502

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(Suppl 1):i197–i204

    PubMed  Google Scholar 

  146. Deng M, Chen T, Sun F (2004) An integrated probabilistic model for functional prediction of proteins. J Comput Biol 11(2–3):463–475. doi:10.1089/1066527041410346

    CAS  PubMed  Google Scholar 

  147. Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Google Scholar 

  148. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS (2004) Kernel-based data fusion and its application to protein function prediction in yeast. Pac Symp Biocomput 9:300–311

    Google Scholar 

  149. Tsuda K, Shin H, Scholkopf B (2005) Fast protein classification with multiple networks. Bioinformatics 21(Suppl 2): ii59–ii65. doi:10.1093/bioinformatics/bti1110

  150. Tian W, Zhang LV, Tasan M, Gibbons FD, King OD, Park J, Wunderlich Z, Cherry JM, Roth FP (2008) Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol 9(Suppl 1):S7. doi:10.1186/gb-2008-9-s1-s7

    PubMed Central  PubMed  Google Scholar 

  151. Tasan M, Tian W, Hill DP, Gibbons FD, Blake JA, Roth FP (2008) An en masse phenotype and function prediction system for Mus musculus. Genome Biol 9(Suppl 1):S8. doi:10.1186/gb-2008-9-s1-s8

    PubMed Central  PubMed  Google Scholar 

  152. Zhang XF, Dai DQ (2012) A framework for incorporating functional interrelationships into protein function prediction algorithms. IEEE/ACM Trans Comput Biol Bioinform 9(3):740–753. doi:10.1109/TCBB.2011.148

    PubMed  Google Scholar 

  153. Jiang JQ, McQuay LJ (2012) Predicting protein function by multi-label correlated semi-supervised learning. IEEE/ACM Trans Comput Biol Bioinform 9(4):1059–1069. doi:10.1109/TCBB.2011.156

    PubMed  Google Scholar 

  154. Gillis J, Pavlidis P (2012) “Guilt by association” is the exception rather than the rule in gene networks. PLoS Comput Biol 8(3):e1002444. doi:10.1371/journal.pcbi.1002444

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Gillis J, Pavlidis P (2011) The impact of multifunctional genes on “guilt by association” analysis. PLoS ONE 6(2):e17258. doi:10.1371/journal.pone.0017258

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Tasan M, Drabkin HJ, Beaver JE, Chua HN, Dunham J, Tian W, Blake JA, Roth FP (2012) A resource of quantitative functional annotation for Homo sapiens genes. G3 (Bethesda) 2(2): 223–233. doi:10.1534/g3.111.000828

    Google Scholar 

  157. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88. doi:10.1038/msb4100129

    PubMed Central  PubMed  Google Scholar 

  158. Wang PI, Marcotte EM (2010) It’s the machine that matters: predicting gene function and phenotype from protein networks. J Proteomics 73(11):2277–2289. doi:10.1016/j.jprot.2010.07.005

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B Condens Matter Complex Syst 38(2):321–330. doi:10.1140/epjb/e2004-00124-y

    CAS  Google Scholar 

  160. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64. doi:10.1016/j.cosrev.2007.05.001

    Google Scholar 

  161. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/j.physrep.2009.11.002

    Google Scholar 

  162. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2 Pt 2):026113

    CAS  Google Scholar 

  163. Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900. doi:10.1038/nature03288

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128. doi:10.1073/pnas.2032324100

    CAS  PubMed Central  PubMed  Google Scholar 

  165. King AD, Przulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20(17):3013–3020. doi:10.1093/bioinformatics/bth351

    CAS  PubMed  Google Scholar 

  166. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72(2 Pt 2):027104

    Google Scholar 

  167. Šíma J, Schaeffer S (2006) On the NP-completeness of some graph cluster measures. In: Wiedermann J, Tel G, Pokorný J, Bieliková M, Štuller J (eds) SOFSEM 2006: theory and practice of computer science, Lecture notes in computer science, vol 3831. Springer, Berlin/Heidelberg, pp 530–537. doi:10.1007/11611257_51

  168. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99(12):7821–7826. doi:10.1073/pnas.122653799

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci U S A 101(9):2658–2663. doi:10.1073/pnas.0400054101

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Wilkinson DM, Huberman BA (2004) A method for finding communities of related genes. Proc Natl Acad Sci U S A 101(Suppl 1):5241–5248. doi:10.1073/pnas.0307740100

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Fortunato S, Latora V, Marchiori M (2004) Method to find community structures based on information centrality. Phys Rev E 70(5 Pt 2):056104

    Google Scholar 

  172. Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18):2283–2290. doi:10.1093/bioinformatics/btl370

    CAS  PubMed  Google Scholar 

  173. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(1):291–307

    Google Scholar 

  174. Pothen A (1995) Graph partitioning algorithms with applications to scientific computing. In: Keyes DE, Sameh AH, Venkatakrishnan V (eds) Parallel numerical algorithms. Kluwer Academic Press, Dordrecht

    Google Scholar 

  175. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Math J 23(98):298–305

    Google Scholar 

  176. Fiedler M (1975) A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Math J 25(4):619–633

    Google Scholar 

  177. Drineas P, Frieze A, Kannan R, Vempala S, Vinay V (2004) Clustering large graphs via the singular value decomposition. Mach Learn 56(1–3):9–33. doi:10.1023/b:mach.0000033113.59016.96

    Google Scholar 

  178. Coja-Oghlan A, Goerdt A, Lanka A (2006) Spectral partitioning of random graphs with given expected degrees. In: Navarro G, Bertossi L, Kohayakawa Y (eds) Fourth IFIP international conference on theoretical computer science—TCS 2006, IFIP international federation for information processing, vol 209 Springer, US, pp 271–282. doi:10.1007/978-0-387-34735-6_22

  179. Flake GW, Lawrence S, Giles CL, Coetzee FM (2002) Self-organization and identification of web communities. Computer 35(3):66–71. doi:10.1109/2.989932

    Google Scholar 

  180. Wu F, Huberman BA (2004) Finding communities in linear time: a physics approach. Eur Phys J B 38(2):331–338

    CAS  Google Scholar 

  181. Weston J, Elisseeff A, Zhou D, Leslie CS, Noble WS (2004) Protein ranking: from local to global structure in the protein similarity network. Proc Natl Acad Sci U S A 101(17):6559–6563. doi:10.1073/pnas.0308067101

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci U S A 100(3):1128–1133. doi:10.1073/pnas.0237338100

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Zhou H (2003) Network landscape from a Brownian particle’s perspective. Phys Rev E 67(4 Pt 1):041908

    Google Scholar 

  184. Zhou H (2003) Distance, dissimilarity index, and network community structure. Phys Rev E 67(6 Pt 1):061901

    Google Scholar 

  185. Navlakha S, Kingsford C (2010) Exploring biological network dynamics with ensembles of graph partitions. Pac Symp Biocomput 15:166–177

    Google Scholar 

  186. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818. doi:10.1038/nature03607

    CAS  PubMed  Google Scholar 

  187. Becker E, Robisson B, Chapple CE, Guenoche A, Brun C (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28(1):84–90. doi:10.1093/bioinformatics/btr621

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Clauset A (2005) Finding local community structure in networks. Phys Rev E: Stat, Nonlin, Soft Matter Phys 72(2 Pt 2):026132

    Google Scholar 

  189. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 9(5):471–472. doi:10.1038/nmeth.1938

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Andersen R, Chung F, Lang K (2007) Using pagerank to locally partition a graph. Internet Math 4(1):35–64. doi:10.1080/15427951.2007.10129139

    Google Scholar 

  191. Voevodski K, Teng SH, Xia Y (2009) Finding local communities in protein networks. BMC bioinformatics 10:297. doi:10.1186/1471-2105-10-297

    PubMed Central  PubMed  Google Scholar 

  192. Bagrow JP (2008) Evaluating local community methods in networks. J Stat Mech Theory Exp 2008(05):P05001

    Google Scholar 

  193. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764. doi:10.1038/nature09182

    CAS  PubMed  Google Scholar 

  194. Evans TS, Lambiotte R (2009) Line graphs, link partitions, and overlapping communities. Phys Rev E 80(1 Pt 2):016105

    CAS  Google Scholar 

  195. Gyenge A, Sinkkonen J, Benczur AA (2010) An efficient block model for clustering sparse graphs. In: Proceedings of the eighth workshop on mining and learning with graphs. ACM, New York, pp 62−69

    Google Scholar 

  196. Farutin V, Robison K, Lightcap E, Dancik V, Ruttenberg A, Letovsky S, Pradines J (2006) Edge-count probabilities for the identification of local protein communities and their organization. Proteins 62(3):800–818. doi:10.1002/prot.20799

    CAS  PubMed  Google Scholar 

  197. Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl Acad Sci U S A 99(25):15879–15882. doi:10.1073/pnas.252631999

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Pradines JR, Farutin V, Rowley S, Dancik V (2005) Analyzing protein lists with large networks: edge-count probabilities in random graphs with given expected degrees. J Comput Bio 12(2):113–128. doi:10.1089/cmb.2005.12.113

    CAS  PubMed  Google Scholar 

  199. Koyuturk M, Szpankowski W, Grama A (2007) Assessing significance of connectivity and conservation in protein interaction networks. J Comput Biol 14(6):747–764. doi:10.1089/cmb.2007.R014

    PubMed  Google Scholar 

  200. Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS ONE 6(4):e18961. doi:10.1371/journal.pone.0018961

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Ball B, Karrer B, Newman ME (2011) Efficient and principled method for detecting communities in networks. Phys Rev E 84(3 Pt 2):036103

    Google Scholar 

  202. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

    PubMed  Google Scholar 

  203. Guo Z, Wang L, Li Y, Gong X, Yao C, Ma W, Wang D, Zhu J, Zhang M, Yang D, Rao S, Wang J (2007) Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics 23(16):2121–2128. doi:10.1093/bioinformatics/btm294

    CAS  PubMed  Google Scholar 

  204. Nacu S, Critchley-Thorne R, Lee P, Holmes S (2007) Gene expression network analysis and applications to immunology. Bioinformatics 23(7):850–858. doi:10.1093/bioinformatics/btm019

    CAS  PubMed  Google Scholar 

  205. Liu M, Liberzon A, Kong SW, Lai WR, Park PJ, Kohane IS, Kasif S (2007) Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet 3(6):e96. doi:10.1371/journal.pgen.0030096

    PubMed Central  PubMed  Google Scholar 

  206. Nibbe RK, Koyuturk M, Chance MR (2010) An integrative-omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol 6(1):e1000639. doi:10.1371/journal.pcbi.1000639

    PubMed Central  PubMed  Google Scholar 

  207. Kim Y, Kim TK, Yoo J, You S, Lee I, Carlson G, Hood L, Choi S, Hwang D (2011) Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics 27(3):391–398. doi:10.1093/bioinformatics/btq670

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18(Suppl 1):S145–S154

    PubMed  Google Scholar 

  209. Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8. doi:10.1186/1752-0509-1-8

    PubMed Central  PubMed  Google Scholar 

  210. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164. doi:10.1093/bioinformatics/btp118

    CAS  PubMed  Google Scholar 

  211. Chowdhury SA, Nibbe RK, Chance MR, Koyuturk M (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18(3):263–281. doi:10.1089/cmb.2010.0269

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Dutkowski J, Ideker T (2011) Protein networks as logic functions in development and cancer. PLoS Comput Biol 7(9):e1002180. doi:10.1371/journal.pcbi.1002180

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Padmanabhan K, Wang K, Samatova NF (2012) Functional annotation of hierarchical modularity. PLoS ONE 7(4):e33744. doi:10.1371/journal.pone.0033744

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Mones E, Vicsek L, Vicsek T (2012) Hierarchy measure for complex networks. PLoS ONE 7(3):e33799. doi:10.1371/journal.pone.0033799

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Gupte M, Shankar P, Li J, Muthukrishnan S, Iftode L (2011) Finding hierarchy in directed online social networks. In: Proceedings of the 20th international conference on World Wide Web. ACM, New York, pp 557−566

    Google Scholar 

  216. Espinosa-Soto C, Wagner A (2010) Specialization can drive the evolution of modularity. PLoS Comput Biol 6(3):e1000719. doi:10.1371/journal.pcbi.1000719

    PubMed Central  PubMed  Google Scholar 

  217. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931. doi:10.1038/nrg2267

    CAS  PubMed  Google Scholar 

  218. Teichmann SA (2002) The constraints protein-protein interactions place on sequence divergence. J Mol Biol 324(3):399–407

    CAS  PubMed  Google Scholar 

  219. Jiang H, Guo X, Xu L, Gu Z (2012) Rewiring of posttranscriptional RNA regulons: Puf4p in fungi as an example. Mol Biol Evol. doi:10.1093/molbev/mss085

    PubMed Central  Google Scholar 

  220. Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433. doi:10.1038/nbt1196

    CAS  PubMed  Google Scholar 

  221. Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25(10):448–454. doi:10.1016/j.tibtech.2007.08.002

    CAS  PubMed  Google Scholar 

  222. Yoon BJ, Qian X, Sahraeian SME (2012) Comparative analysis of biological networks: hidden Markov model and Markov chain-based approach. IEEE Signal Process Mag 29(1): 22–34. doi:http://dx.doi.org/10.1109/MSP.2011.942819

  223. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A 100(20):11394–11399. doi:10.1073/pnas.1534710100

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci U S A 102(6):1974–1979. doi:10.1073/pnas.0409522102

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S (2006) Graemlin: general and robust alignment of multiple large interaction networks. Genome Res 16(9):1169–1181. doi:10.1101/gr.5235706

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Liang Z, Xu M, Teng M, Niu L (2006) Comparison of protein interaction networks reveals species conservation and divergence. BMC Bioinformatics 7:457. doi:10.1186/1471-2105-7-457

    PubMed Central  PubMed  Google Scholar 

  227. Liang Z, Xu M, Teng M, Niu L (2006) NetAlign: a web-based tool for comparison of protein interaction networks. Bioinformatics 22(17):2175–2177. doi:10.1093/bioinformatics/btl287

    CAS  PubMed  Google Scholar 

  228. Cootes AP, Muggleton SH, Sternberg MJ (2007) The identification of similarities between biological networks: application to the metabolome and interactome. J Mol Biol 369(4):1126–1139. doi:10.1016/j.jmb.2007.03.013

    CAS  PubMed  Google Scholar 

  229. Narayanan M, Karp RM (2007) Comparing protein interaction networks via a graph match-and-split algorithm. J Comput Biol 14(7):892–907. doi:10.1089/cmb.2007.0025

    CAS  PubMed  Google Scholar 

  230. Pache RA, Aloy P (2012) A novel framework for the comparative analysis of biological networks. PLoS ONE 7(2):e31220. doi:10.1371/journal.pone.0031220

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Singh R, Xu J, Berger B (2007) Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Speed T, Huang H (eds) RECOMB 2007, Lecture notes in computer science, vol 4453. Springer, Berlin/Heidelberg, pp 16–31. doi:10.1007/978-94-007-6803-1_2

  232. Singh R, Xu J, Berger B (2008) Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci U S A 105(35): 12763–12768. doi:10.1073/pnas.0806627105

    Google Scholar 

  233. Klau GW (2009) A new graph-based method for pairwise global network alignment. BMC Bioinformatics 10(Suppl 1):S59. doi:10.1186/1471-2105-10-S1-S59

    PubMed Central  PubMed  Google Scholar 

  234. Flannick J, Novak A, Do CB, Srinivasan BS, Batzoglou S (2009) Automatic parameter learning for multiple local network alignment. J Comput Biol 16(8):1001–1022. doi:10.1089/cmb.2009.0099

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Liao CS, Lu K, Baym M, Singh R, Berger B (2009) IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12):i253–i258. doi:10.1093/bioinformatics/btp203

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Bayati M, Gerritsen M, Gleich DF, Saberi A, Wang Y (2009) Algorithms for large, sparse network alignment problems. In: Proceedings of the 2009 Ninth IEEE international conference on data mining. IEEE Computer Society, Washington, pp 705–710. doi:10.1109/ICDM.2009.135

  237. Kuchaiev O, Milenkovic T, Memisevic V, Hayes W, Przulj N (2010) Topological network alignment uncovers biological function and phylogeny. J R Soc Interface 7(50):1341–1354. doi:10.1098/rsif.2010.0063

    PubMed Central  PubMed  Google Scholar 

  238. Kuchaiev O, Przulj N (2011) Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27(10):1390–1396. doi:10.1093/bioinformatics/btr127

    CAS  PubMed  Google Scholar 

  239. Chindelevitch L, Liao CS, Berger B (2010) Local optimization for global alignment of protein interaction networks. Pac Symp Biocomput 15:123–132

    Google Scholar 

  240. Shih YK, Parthasarathy S (2012) Scalable global alignment for multiple biological networks. BMC Bioinformatics 13(Suppl 3):S11. doi:10.1186/1471-2105-13-S3-S11

    PubMed Central  PubMed  Google Scholar 

  241. Hodgkinson L, Karp RM (2011) Algorithms to detect multiprotein modularity conserved during evolution. IEEE/ACM Trans Comput Biol Bioinform. doi:10.1109/TCBB.2011.125

    Google Scholar 

  242. Phan HT, Sternberg MJ (2012) PINALOG: a novel approach to align protein interaction networks–implications for complex detection and function prediction. Bioinformatics 28(9):1239–1245. doi:10.1093/bioinformatics/bts119

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Ogata H, Fujibuchi W, Goto S, Kanehisa M (2000) A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res 28(20):4021–4028

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM (2005) Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 23(8):951–959. doi:10.1038/nbt1103

    CAS  PubMed  Google Scholar 

  245. Zhang LV, King OD, Wong SL, Goldberg DS, Tong AH, Lesage G, Andrews B, Bussey H, Boone C, Roth FP (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6. doi:10.1186/jbiol23

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Srinivasan B, Novak A, Flannick J, Batzoglou S, McAdams H (2006) Integrated protein interaction networks for 11 microbes. In: Apostolico A, Guerra C, Istrail S, Pevzner P, Waterman M (eds), RECOMB 2006 Lecture notes in computer science, vol 3909. Springer Berlin/Heidelberg, pp 1–14. doi:10.1007/978-94-007-6803-1_1

  247. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6):1106–1117. doi:10.1016/j.cell.2008.04.043

    CAS  PubMed  Google Scholar 

  248. Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Rutenberg C, Suthram S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong YA, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J (2009) Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog 5(9):e1000570. doi:10.1371/journal.ppat.1000570

    PubMed Central  PubMed  Google Scholar 

  249. Acharjee A, Kloosterman B, de Vos RC, Werij JS, Bachem CW, Visser RG, Maliepaard C (2011) Data integration and network reconstruction with ~omics data using random forest regression in potato. Anal Chim Acta 705(1–2):56–63. doi:10.1016/j.aca.2011.03.050

    CAS  PubMed  Google Scholar 

  250. Pinter RY, Rokhlenko O, Yeger-Lotem E, Ziv-Ukelson M (2005) Alignment of metabolic pathways. Bioinformatics 21(16):3401–3408. doi:10.1093/bioinformatics/bti554

    CAS  PubMed  Google Scholar 

  251. Qian X, Sze SH, Yoon BJ (2009) Querying pathways in protein interaction networks based on hidden Markov models. J Comput Biol 16(2):145–157. doi:10.1089/cmb.2008.02TT

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Huang Q, Wu LY, Zhang XS (2011) An efficient network querying method based on conditional random fields. Bioinformatics 27(22):3173–3178. doi:10.1093/bioinformatics/btr524

    CAS  PubMed  Google Scholar 

  253. Durand P, Labarre L, Meil A, Divo JL, Vandenbrouck Y, Viari A, Wojcik J (2006) GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins. BMC Bioinformatics 7:21. doi:10.1186/1471-2105-7-21

    PubMed Central  PubMed  Google Scholar 

  254. Shlomi T, Segal D, Ruppin E, Sharan R (2006) QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7:199. doi:10.1186/1471-2105-7-199

    PubMed Central  PubMed  Google Scholar 

  255. Yang Q, Sze SH (2007) Path matching and graph matching in biological networks. J Comput Biol 14(1):56–67. doi:10.1089/cmb.2006.0076

    CAS  PubMed  Google Scholar 

  256. Tian Y, McEachin RC, Santos C, States DJ, Patel JM (2007) SAGA: a subgraph matching tool for biological graphs. Bioinformatics 23(2):232–239. doi:10.1093/bioinformatics/btl571

    CAS  PubMed  Google Scholar 

  257. Ferro A, Giugno R, Pigola G, Pulvirenti A, Skripin D, Bader GD, Shasha D (2007) NetMatch: a Cytoscape plugin for searching biological networks. Bioinformatics 23(7):910–912. doi:10.1093/bioinformatics/btm032

    CAS  PubMed  Google Scholar 

  258. Wernicke S, Rasche F (2007) Simple and fast alignment of metabolic pathways by exploiting local diversity. Bioinformatics 23(15):1978–1985. doi:10.1093/bioinformatics/btm279

    CAS  PubMed  Google Scholar 

  259. Dost B, Shlomi T, Gupta N, Ruppin E, Bafna V, Sharan R (2008) QNet: a tool for querying protein interaction networks. J Comput Biol 15(7):913–925. doi:10.1089/cmb.2007.0172

    CAS  PubMed  Google Scholar 

  260. Blin G, Sikora F, Vialette S (2010) Querying graphs in protein-protein interactions networks using feedback vertex set. IEEE/ACM Trans Comput Biol Bioinform 7(4):628–635. doi:10.1109/TCBB.2010.53

    CAS  PubMed  Google Scholar 

  261. Bruckner S, Huffner F, Karp RM, Shamir R, Sharan R (2010) Topology-free querying of protein interaction networks. J Comput Biol 17(3):237–252. doi:10.1089/cmb.2009.0170

    CAS  PubMed  Google Scholar 

  262. Fionda V, Palopoli L (2011) Biological network querying techniques: analysis and comparison. J Comput Biol 18(4):595–625. doi:10.1089/cmb.2009.0144

    CAS  PubMed  Google Scholar 

  263. Zhang S, Zhang XS, Chen L (2008) Biomolecular network querying: a promising approach in systems biology. BMC Syst Biol 2:5. doi:10.1186/1752-0509-2-5

    PubMed Central  PubMed  Google Scholar 

  264. Albert I, Albert R (2004) Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18):3346–3352. doi:10.1093/bioinformatics/bth402

    CAS  PubMed  Google Scholar 

  265. Huang TW, Lin CY, Kao CY (2007) Reconstruction of human protein interolog network using evolutionary conserved network. BMC Bioinformatics 8:152. doi:10.1186/1471-2105-8-152

    PubMed Central  PubMed  Google Scholar 

  266. Bandyopadhyay S, Sharan R, Ideker T (2006) Systematic identification of functional orthologs based on protein network comparison. Genome Res 16(3):428–435. doi:10.1101/gr.4526006

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. doi:10.1126/science.298.5594.824

    CAS  PubMed  Google Scholar 

  268. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:10.1038/ng881

    CAS  PubMed  Google Scholar 

  269. Itzkovitz S, Milo R, Kashtan N, Ziv G, Alon U (2003) Subgraphs in random networks. Phys Rev E 68(2 Pt 2):026127

    CAS  Google Scholar 

  270. Itzkovitz S, Alon U (2005) Subgraphs and network motifs in geometric networks. Phys Rev E 71(2 Pt 2):026117

    Google Scholar 

  271. Picard F, Daudin JJ, Koskas M, Schbath S, Robin S (2008) Assessing the exceptionality of network motifs. J Comput Biol 15(1):1–20. doi:10.1089/cmb.2007.0137

    CAS  Google Scholar 

  272. Schbath S, Lacroix V, Sagot MF (2009) Assessing the exceptionality of coloured motifs in networks. EURASIP J Bioinform Syst Biol 1:616234. doi:10.1186/1687-4153-2009-616234

    Google Scholar 

  273. Berg J, Lassig M (2004) Local graph alignment and motif search in biological networks. Proc Natl Acad Sci U S A 101(41):14689–14694. doi:10.1073/pnas.0305199101

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542. doi:10.1126/science.1089167

    CAS  PubMed  Google Scholar 

  275. Przulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183. doi:10.1093/bioinformatics/btl301

    CAS  PubMed  Google Scholar 

  276. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461. doi:10.1038/nrg2102

    CAS  PubMed  Google Scholar 

  277. Wong E, Baur B, Quader S, Huang CH (2012) Biological network motif detection: principles and practice. Brief Bioinform 13(2):202–215. doi:10.1093/bib/bbr033

    PubMed Central  PubMed  Google Scholar 

  278. Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006) Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199. doi:10.1089/cmb.2006.13.182

    Google Scholar 

  279. Berg J, Lassig M (2006) Cross-species analysis of biological networks by Bayesian alignment. Proc Natl Acad Sci U S A 103(29):10967–10972. doi:10.1073/pnas.0602294103

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Capra JA, Pollard KS, Singh M (2010) Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol 11(12):R127. doi:10.1186/gb-2010-11-12-r127

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Pagel M, Meade A, Scott D (2007) Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes. BMC Evol Biol 7(Suppl 1):S16. doi:10.1186/1471-2148-7-S1-S16

    PubMed Central  PubMed  Google Scholar 

  282. Sole RV, Satorras P, Smith E, Kepler TB (2002) A model of large-scale proteome evolution. Adv Complex Syst 5(1):43–54

    Google Scholar 

  283. Vázquez A, Flammini A, Maritan A, Vespignani A (2003) Modeling of protein interaction networks. Complexus 1(1):38–44

    Google Scholar 

  284. Chung F, Lu L, Dewey TG, Galas DJ (2003) Duplication models for biological networks. J Comput Biol 10(5):677–687. doi:10.1089/106652703322539024

    CAS  Google Scholar 

  285. Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput Biol 3(2):e25. doi:10.1371/journal.pcbi.0030025

    PubMed Central  PubMed  Google Scholar 

  286. Berg J, Lassig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51. doi:10.1186/1471-2148-4-51

    PubMed Central  PubMed  Google Scholar 

  287. Emmert-Streib F (2012) Limitations of gene duplication models: evolution of modules in protein interaction networks. PLoS ONE 7(4):e35531. doi:10.1371/journal.pone.0035531

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Gibson TA, Goldberg DS (2011) Improving evolutionary models of protein interaction networks. Bioinformatics 27(3):376–382. doi:10.1093/bioinformatics/btq623

    CAS  PubMed Central  PubMed  Google Scholar 

  289. Evlampiev K, Isambert H (2007) Modeling protein network evolution under genome duplication and domain shuffling. BMC Syst Biol 1:49. doi:10.1186/1752-0509-1-49

    PubMed Central  PubMed  Google Scholar 

  290. Gibson TA, Goldberg DS (2009) Reverse engineering the evolution of protein interaction networks. Pac Symp Biocomput 14:190–202

    Google Scholar 

  291. Yamada T, Bork P (2009) Evolution of biomolecular networks: lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol 10(11):791–803. doi:10.1038/nrm2787

    CAS  PubMed  Google Scholar 

  292. Oyarzun DA, Chaves M, Hoff-Hoffmeyer-Zlotnik M (2012) Multistability and oscillations in genetic control of metabolism. J Theor Biol 295:139–153. doi:10.1016/j.jtbi.2011.11.017

    CAS  PubMed  Google Scholar 

  293. Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, Moos F (2008) Emergent synchronous bursting of oxytocin neuronal network. PLoS Comput Biol 4(7):e1000123. doi:10.1371/journal.pcbi.1000123

    PubMed Central  PubMed  Google Scholar 

  294. Villani M, Barbieri A, Serra R (2011) A dynamical model of genetic networks for cell differentiation. PLoS ONE 6(3):e17703. doi:10.1371/journal.pone.0017703

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64. doi:10.1371/journal.pcbi.0030064

    PubMed Central  PubMed  Google Scholar 

  296. Alberghina L, Hofer T, Vanoni M (2009) Molecular networks and system-level properties. J Biotechnol 144(3):224–233. doi:10.1016/j.jbiotec.2009.07.009

    CAS  PubMed  Google Scholar 

  297. Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301(5641):1866–1867. doi:10.1126/science.1089072

    CAS  PubMed  Google Scholar 

  298. Pavlopoulos GA, Wegener AL, Schneider R (2008) A survey of visualization tools for biological network analysis. BioData Min 1:12. doi:10.1186/1756-0381-1-12

    PubMed Central  PubMed  Google Scholar 

  299. Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433. doi:10.1093/bioinformatics/bti696

    CAS  PubMed  Google Scholar 

  300. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exper 21(11):1129–1164. doi:10.1002/spe.4380211102

    Google Scholar 

  301. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue): D561–D568. doi:10.1093/nar/gkq973

  302. Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, Beyer A, Bork P (2010) STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 38(Database issue): D55–D556. doi:10.1093/nar/gkp937

  303. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics 26(18):2347–2348. doi:10.1093/bioinformatics/btq430

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Theocharidis A, van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using BioLayout Express(3D). Nat Protoc 4(10):1535–1550. doi:10.1038/nprot.2009.177

    CAS  PubMed  Google Scholar 

  305. Gordon PM, Sensen CW (2004) Osprey: a comprehensive tool employing novel methods for the design of oligonucleotides for DNA sequencing and microarrays. Nucleic Acids Res 32(17):e133. doi:10.1093/nar/gnh127

    PubMed Central  PubMed  Google Scholar 

  306. Batagelj V, Brandenburg FJ, Didimo W, Liotta G, Palladino P, Patrignani M (2010) Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans Vis Comput Graph. doi:10.1109/TVCG.2010.265

    PubMed  Google Scholar 

  307. Forman JJ, Clemons PA, Schreiber SL, Haggarty SJ (2005) SpectralNET–an application for spectral graph analysis and visualization. BMC Bioinformatics 6:260. doi:10.1186/1471-2105-6-260

    PubMed Central  PubMed  Google Scholar 

  308. Haggarty SJ, Clemons PA, Wong JC, Schreiber SL (2004) Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors. Comb Chem High Throughput Screening 7(7):669–676

    CAS  Google Scholar 

  309. Shojaie A, Michailidis G (2010) Network enrichment analysis in complex experiments. Stat Appl Genet Mol Biol 9(1): Article22. doi:10.2202/1544-6115.1483

  310. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. doi:10.1073/pnas.0506580102

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 102(38):13544–13549. doi:10.1073/pnas.0506577102

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Li C, Wei Z, Li H (2010) Network-based empirical Bayes methods for linear models with applications to genomic data. J Biopharm Stat 20(2):209–222. doi:10.1080/10543400903572712

    PubMed Central  PubMed  Google Scholar 

  313. Wei P, Pan W (2008) Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24(3):404–411. doi:10.1093/bioinformatics/btm612

    PubMed  Google Scholar 

  314. Pradines J, Dancik V, Ruttenberg A, Farutin V (2007) Connectedness profiles in protein networks for the analysis of gene expression data. In: Speed T, Huang H (eds) RECOMB 2007, Lecture Notes in Computer Science, vol 4453. Springer, Berlin/Heidelberg, pp 296-310. doi:10.1007/978-94-007-6803-1_2

  315. Sanguinetti G, Noirel J, Wright PC (2008) MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8):1078–1084. doi:10.1093/bioinformatics/btn066

    CAS  PubMed  Google Scholar 

  316. Shojaie A, Michailidis G (2009) Analysis of gene sets based on the underlying regulatory network. J Comput Biol 16(3):407–426. doi:10.1089/cmb.2008.0081

    CAS  Google Scholar 

  317. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378

    CAS  PubMed  Google Scholar 

  318. Basu A, Rose KL, Zhang J, Beavis RC, Ueberheide B, Garcia BA, Chait B, Zhao Y, Hunt DF, Segal E, Allis CD, Hake SB (2009) Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci U S A 106(33):13785–13790. doi:10.1073/pnas.0906801106

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, Ebbels TM, Keun HC (2011) Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7(3):e1001113. doi:10.1371/journal.pcbi.1001113

    CAS  PubMed Central  PubMed  Google Scholar 

  320. Waters KM, Liu T, Quesenberry RD, Willse AR, Bandyopadhyay S, Kathmann LE, Weber TJ, Smith RD, Wiley HS, Thrall BD (2012) Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data. PLoS ONE 7(3):e34515. doi:10.1371/journal.pone.0034515

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Barabasi AL (2007) Network medicine–from obesity to the “diseasome”. New England J Med 357(4):404–407. doi:10.1056/NEJMe078114

    CAS  Google Scholar 

  322. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998. doi:10.1016/j.cell.2011.02.016

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582(8):1266–1270. doi:10.1016/j.febslet.2008.02.011

    CAS  PubMed  Google Scholar 

  324. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. doi:10.1038/nrg2918

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Ergun A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ (2007) A network biology approach to prostate cancer. Mol Syst Biol 3:82. doi:10.1038/msb4100125

    PubMed Central  PubMed  Google Scholar 

  326. Ciriello G, Cerami E, Sander C, Schultz N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22(2):398–406. doi:10.1101/gr.125567.111

    CAS  PubMed Central  PubMed  Google Scholar 

  327. Sridhar P, Kahveci T, Ranka S (2007) An iterative algorithm for metabolic network-based drug target identification. Pac Symp Biocomput 12:88–99

    Google Scholar 

  328. Sridhar P, Song B, Kahveci T, Ranka S (2008) Mining metabolic networks for optimal drug targets. Pac Symp Biocomput 13:291–302

    Google Scholar 

  329. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121. doi:10.1101/gr.118992.110

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Klipp E, Wade RC, Kummer U (2010) Biochemical network-based drug-target prediction. Curr Opin Biotechnol 21(4):511–516. doi:10.1016/j.copbio.2010.05.004

    CAS  PubMed  Google Scholar 

  331. Farkas IJ, Korcsmaros T, Kovacs IA, Mihalik A, Palotai R, Simko GI, Szalay KZ, Szalay-Beko M, Vellai T, Wang S, Csermely P (2011) Network-based tools for the identification of novel drug targets. Sci Signal 4(173): pt3. doi:10.1126/scisignal.2001950

  332. Wang X, Gulbahce N, Yu H (2011) Network-based methods for human disease gene prediction. Brief Funct Genomics 10(5):280–293. doi:10.1093/bfgp/elr024

    CAS  PubMed  Google Scholar 

  333. Piro RM, Di Cunto F (2012) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS J 279(5):678–696. doi:10.1111/j.1742-4658.2012.08471.x

    CAS  PubMed  Google Scholar 

  334. Brouwers L, Iskar M, Zeller G, van Noort V, Bork P (2011) Network neighbors of drug targets contribute to drug side-effect similarity. PLoS ONE 6(7):e22187. doi:10.1371/journal.pone.0022187

    CAS  PubMed Central  PubMed  Google Scholar 

  335. Chang RL, Xie L, Bourne PE, Palsson BO (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6(9):e1000938. doi:10.1371/journal.pcbi.1000938

    PubMed Central  PubMed  Google Scholar 

  336. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8(5):e1002503. doi:10.1371/journal.pcbi.1002503

    CAS  PubMed Central  PubMed  Google Scholar 

  337. Loscalzo J, Barabasi AL (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3(6):619–627. doi:10.1002/wsbm.144

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado Dančík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dančík, V., Basu, A., Clemons, P. (2013). Properties of Biological Networks. In: Prokop, A., Csukás, B. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6803-1_5

Download citation

Publish with us

Policies and ethics