Skip to main content

Abstract

It is of practical interest to know whether a biological network contains mass-preserving and state-preserving subnetworks. In a mass-preserving subnetwork, the total mass is constant and, therefore, bounded. In any state-preserving subnetwork biochemical reactions bring the subnetwork back to a given state. For instance, any reversible reaction forms a state-preserving subnetwork. In a large intricate biological network, it is rather cumbersome task to determine mass-preserving and state-preserving subnetworks.

Akt and MAPK are important pathways regulating cell proliferation, differentiation, senescence and apoptosis. In the present research, we derive information from Reactome and KEGG databases as well as from existing literature, to date, to create rather detailed Petri net model of Akt and MAPK pathways and crosstalk one pathway to another and perform their qualitative analysis with computation of P-invariants and T-invariants to determine mass-preserving and state-preserving subnetworks. We also make deductions regarding the temporal behavior of both pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashirov, R., Akçay, Nİ.: Stochastic simulation-based prediction of the behavior of the p16-mediated signaling pathway. Fundam. Inform. 160, 167–179 (2018). https://doi.org/10.3233/FI-2018-1679

    Article  MathSciNet  Google Scholar 

  2. Bashirov, R., Mehraei, M.: Identifying targets for gene therapy of β-globin disorders using quantitative modeling approach. Inform. Sci. 397–398, 37–47 (2017). https://doi.org/10.1016/j.ins.2017.02.053

    Article  Google Scholar 

  3. Castellano, E., Downward, J.: RAS interaction with PI3K: more than just another effector pathway. SAGE J. 2(3), 261–274 (2011)

    Google Scholar 

  4. Chang, F., Steelman, L.S., Lee, J.T., Shelton, J.G., Navolanic, P.M., Blalock, W.L., Franklin, R.A., McCubrey, J.A.: Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263–1293 (2003)

    Article  Google Scholar 

  5. Croft, D., O’Kelly, G., et al.: Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011)

    Article  Google Scholar 

  6. Faes, S., Formond, O.: PI3K and AKT: unfaithful partners in cancer. Int. J. Mol. Sci. 16(9), 21138–21152 (2015)

    Article  Google Scholar 

  7. Heiner, M., Schwarick, M., Wegener, J.T.: Charlie – an extensible Petri net analysis tool. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015, LNCS, vol. 9115, pp. 200–211. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  8. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012, LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)

    Google Scholar 

  9. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) Formal Methods for Computational Systems Biology, LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(1), D277–D280 (2008)

    Google Scholar 

  11. Koch, I., Chaouiya, C.: Discrete modelling: petri net and logical approaches. In: Sandun, C. (ed.) Systems Biology for Signaling Networks, pp. 821–855. Springer, New York (2010)

    Chapter  Google Scholar 

  12. Malek, M., Kielkowska, A., Chessa, T., Clark, J., Hawkins, P.T., Stephens, L.R.: PTEN regulates PI(3,4)P2 signalling downstream of class I PI3K. Mol. Cell 68(3), 566–588 (2017)

    Article  Google Scholar 

  13. McCubrey, J.A., Steelman, L.S., Chappell, W.H.: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BBA 1773(8), 1263–1284 (2007)

    Google Scholar 

  14. Osaki, M., Oshimura, M., Ito, H.: PI3K-AKT pathway: its functions and alterations in human cancer. Apoptosis 9(6), 667–676 (2004)

    Article  Google Scholar 

  15. Shaul, Y.D., Seger, R.: The MEK/ERK cascade: from signalling specificity to diverse functions. BBA 1773(8), 1213–1226 (2007)

    Google Scholar 

  16. Zhang, X., Majerus, P.W.: Phosphatidylinositol signalling reactions. Semin. Cell Dev. Biol. 9(2), 153–160 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rza Bashirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bashirov, R., Ngandjoug, G.R.Y. (2020). Understanding Behavior of Biological Network via Invariant Computation. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F. (eds) 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions - ICSCCW-2019. ICSCCW 2019. Advances in Intelligent Systems and Computing, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-030-35249-3_50

Download citation

Publish with us

Policies and ethics