Skip to main content
Log in

Multiple ordered solutions for a class of quasilinear problem with oscillating nonlinearity

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we use truncation argument combined with method of minimization, argument of comparison, topological degree arguments and sub-supersolutions method to show existence of multiple positive solutions (which are ordered in the \(C(\overline{\Omega })\)-norm) for the following class of problems:

$$\begin{aligned} \left\{ \begin{aligned} -&\Delta u - \kappa \Delta (u^{2}) u +\mu |u|^{q-2}u = \lambda f(u)+h(u) \ \ \text{ in } \ \ \Omega , \\ u&=0 \ \ \text{ on } \ \ \partial \Omega , \end{aligned} \right. \end{aligned}$$

where \(\Omega \) is a bounded smooth domain of \(\mathbb {R}^N\) \((N\ge 1), \kappa ,\mu ,\lambda > 0,q\ge 1\) are parameters, the nonlinearity \(f: \mathbb {R}\rightarrow \mathbb {R}\) is a continuous function that can change sign and satisfies an area condition and \(h: \mathbb {R}\rightarrow \mathbb {R}\) is a general nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Alarcón, S., Iturriaga, L., Ritorto, A.: Nonnegative solutions for the fractional Laplacian involving a nonlinearity with zeros. Manuscr. Math. 167, 345–363 (2022). https://doi.org/10.1007/s00229-021-01275-w

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Hess, P.: Positive solutions of asymptotically linear elliptic eigenvalue. Math. Anal. Appl. 73(73), 411–422 (1980)

    MathSciNet  Google Scholar 

  3. Arcoya, D., Boccardo, L., Orsina, L.: Critical points for functionals with quasilinear singular Euler–Lagrange equations. Calc. Var. Partial Differ. Equ. 47, 159–180 (2013)

    MathSciNet  Google Scholar 

  4. Bass, F., Nasanov, N.N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990)

    ADS  Google Scholar 

  5. Borovskii, A., Galkin, A.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1983)

    ADS  Google Scholar 

  6. Brandi, H., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993)

    ADS  CAS  Google Scholar 

  7. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.J.: Static solutions of a Ddimensional modified nonlinear Schrödinger equation. Nonlinearity 16, 1481–1497 (2003)

    ADS  MathSciNet  Google Scholar 

  8. Brown, K.J., Budin, H.: Multiple positive solutions for a class of nonlinear boundary value problems. J. Math. Anal. Appl. 60, 329–338 (1977)

    MathSciNet  Google Scholar 

  9. Brown, K.J., Budin, H.: On the existence of positive solutions for a class of semilinear elliptic boundary value problems. SIAM J. Math. Anal. 60, 875–883 (1979)

    MathSciNet  Google Scholar 

  10. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys. Rev. Lett. 70, 2082–2085 (1993)

    ADS  CAS  PubMed  Google Scholar 

  11. Chen, S., Santos, C.A., Yang, M., Zhou, J.: Bifurcation analysis for a modified quasilinear equation with negative exponent. Adv. Nonlinear Anal. 11, 684–701 (2022)

    MathSciNet  Google Scholar 

  12. Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integr. Equ. 27, 289–300 (2014)

    MathSciNet  Google Scholar 

  13. Cintra, W., Medeiros, E., Severo, U.: On positive solutions for a class of quasilinear elliptic equations. Z. Angew. Math. Phys. 70, 79 (2019)

    MathSciNet  Google Scholar 

  14. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    MathSciNet  Google Scholar 

  15. Corrêa, F.J.S.A., Carvalho, M.L., Gonçalves, J.V.A., Silva, K.O.: Positive solutions of strongly nonlinear elliptic problems. Asymptot. Anal. 93, 1–20 (2015). https://doi.org/10.3233/ASY-141278

    Article  MathSciNet  Google Scholar 

  16. Corrêa, F.J.S.A., Corrêa, A.S.S., Santos Junior, J.R.: Multiple ordered positive solutions of an elliptic problem involving the p-q-Laplacian. J. Convex Anal. 21(4), 1023–1042 (2014)

    MathSciNet  Google Scholar 

  17. Corrêa, F.J.S.A., de Lima, R.N., Nóbrega, A.B.: On positive solutions of elliptic equations with oscillating nonlinearity in \(\mathbb{R} ^N\). Mediterr. J. Math. 19, 62 (2022). https://doi.org/10.1007/s00009-022-01993-9

    Article  MathSciNet  Google Scholar 

  18. Corrêa, F.J.S.A., dos Santos, G.C.G., Tavares, L.S.: Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method. Z. Angew. Math. Phys. 72, 99 (2021). https://doi.org/10.1007/s00033-021-01532-8

    Article  MathSciNet  Google Scholar 

  19. Dancer, E.N.: Multiple fixed points of positive mappings. J. Reine Angew. Math. 371, 46–66 (1986)

    MathSciNet  Google Scholar 

  20. Dancer, E., Schmitt, K.: On positive solutions of semilinear elliptic equations. Proc. Am. Math. Soc. 101, 445–452 (1987)

    MathSciNet  Google Scholar 

  21. de Figueiredo, D.G.: On the existence of multiple ordered solutions for nonlinear eigenvalue problems. Nonlinear Anal. TMA 11, 481–492 (1987)

    MathSciNet  Google Scholar 

  22. do Ó, J.M., Moameni, A.: Solutions for singular quasilinear Schrödinger equations with one parameter. Commun. Pure Appl. Anal. 9, 1011–1023 (2010)

    MathSciNet  Google Scholar 

  23. do Ó, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. 38, 275–315 (2010). https://doi.org/10.1007/s00526-009-0286-6

    Article  MathSciNet  Google Scholar 

  24. dos Santos, G., Figueiredo, G.M., Severo, U.B.: Multiple solutions for a class of singular quasilinear problems. J. Math. Anal. Appl. 480(2), 123405 (2019)

    MathSciNet  Google Scholar 

  25. dos Santos, G., Figueiredo, G.M., Pimenta, M.T.O.: Multiple ordered solutions for a class of problems involving the 1-Laplacian operator. J. Geom. Anal. 32, 140 (2022). https://doi.org/10.1007/s12220-022-00881-8

    Article  MathSciNet  Google Scholar 

  26. Fang, X.-D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013)

    ADS  Google Scholar 

  27. Figueiredo, G.M., Júnior, J.R.S., Suarez, A.: Structure of the set of positive solutions of a non-linear Schrödinger equation. Isr. J. Math. 227, 485–505 (2018)

    Google Scholar 

  28. Figueiredo, G.M., Ruviaro, R., Junior, J.O.: Quasilinear equations involving critical exponent and concave nonlinearity at the origin. Milan J. Math. (2020). https://doi.org/10.1007/s00032-020-00315-63

    Article  MathSciNet  Google Scholar 

  29. Figueiredo, G.M., Severo, U.B., Siciliano, G.: Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity. Adv. Nonlinear Stud. 20(4), 933–963 (2020)

    MathSciNet  Google Scholar 

  30. García-Melián, J., Iturriaga, L.: Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros. Isr. J. Math. 210, 233–244 (2015)

    MathSciNet  Google Scholar 

  31. Hartmann, B., Zakrzewski, W.J.: Electrons on hexagonal lattices and applications to nanotubes. Phys. Rev. B 68, 184302 (2003)

    ADS  Google Scholar 

  32. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schroödinger equation. Z. Phys. B 37, 83–87 (1980)

    ADS  MathSciNet  Google Scholar 

  33. Hess, P.: On multiple positive solutions of nonlinear elliptic eigenvalue problems. Commun. Partial Differ. Equ. 6, 951–961 (1981)

    MathSciNet  Google Scholar 

  34. Iturriaga, L., Massa, E., Sánchez, J., Ubilla, P.: Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros. J. Differ. Equ. 248, 309–327 (2010)

    ADS  MathSciNet  Google Scholar 

  35. Jing, Y., Liu, Z., Wang, Z.-Q.: Multiple solutions of a parameter-dependent quasilinear elliptic equation. Calc. Var. Partial Differ. Equ. 55, 150 (2016)

    MathSciNet  Google Scholar 

  36. Kavian, O.: Introduction á la théorie des points critiques et applications aux problémes elliptíques, Mathématiques and Applications, vol. 13. Springer, Paris (1993)

    Google Scholar 

  37. Kurihura, S.: Large-amplitude quasi-solitons in super fluids films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    ADS  Google Scholar 

  38. Laedke, E., Spatschek, K.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1963)

    ADS  MathSciNet  Google Scholar 

  39. Lima Alves, R.: Existence of positive solution for a singular elliptic problem with an asymptotically linear nonlinearity. Mediterr. J. Math. 18, 4 (2021)

    MathSciNet  Google Scholar 

  40. Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    ADS  Google Scholar 

  41. Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete Contin. Dyn. Syst. Ser. S 14, 1779–1799 (2021)

    MathSciNet  Google Scholar 

  42. Loc, N.H., Schmitt, K.: On positive solutions of quasilinear elliptic equations. Differ. Integr. Equ. 22, 829–842 (2009)

    MathSciNet  Google Scholar 

  43. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    ADS  MathSciNet  CAS  Google Scholar 

  44. Motreanu, D., Motreanu, V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Google Scholar 

  45. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)

    MathSciNet  Google Scholar 

  46. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994)

    ADS  Google Scholar 

  47. Santos, C.A., Yang, M., Zhou, J.: Global multiplicity of solutions for a modified elliptic problem with singular terms. Nonlinearity 34, 7842–7871 (2021)

    ADS  MathSciNet  Google Scholar 

  48. Xiaohui, Y.: Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Commun. Pure Appl. Anal. 12, 451–459 (2013)

    MathSciNet  Google Scholar 

Download references

Funding

The first author was partially supported by CNPq/Brazil Proc. No 306709-2022-8 and by FAPDF/Brazil.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the development and completion of the manuscript.

Corresponding author

Correspondence to Gelson C. G. dos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.C.G., Silva, J.R.S. Multiple ordered solutions for a class of quasilinear problem with oscillating nonlinearity. J. Fixed Point Theory Appl. 26, 7 (2024). https://doi.org/10.1007/s11784-023-01096-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-023-01096-2

Keywords

Mathematics Subject Classification

Navigation