1 Completeness

Let (Xd) be a metric space. A mapping \(T:X\rightarrow X\) is called a Kannan mapping if there exists \(K< \frac{1}{2}\) such that for all \(x,y\in X\),

$$\begin{aligned} d(Tx,Ty)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}. \end{aligned}$$
(1)

In 1968, Kannan [9] proved the following fixed point theorem, see [6].

Theorem 1.1

(Kannan) Let (Xd) be a complete metric space and let \(T:X\rightarrow X\) be a Kannan mapping. Then T has a unique fixed point \(v\in X\) and for any \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v.

Using Kannan’s mappings Subrahmanyam [16] proved the following characterization of complete metric spaces:

Theorem 1.2

A metric space (Xd) is complete if and only if every Kannan mapping \(T:X\rightarrow X\) has a fixed point.

Here is a simple use of this result.

Example 1.3

Let \(\mathbb {Q}\) be endowed with the Euclidean metric and \(T:\mathbb {Q}\rightarrow \mathbb {Q}\) be a mapping defined by:

$$\begin{aligned}&\quad \hbox {for}~~x\in \mathbb {Q}~~\hbox {and}~~x<\sqrt{2}~~\hbox {let}~~Tx\in \left\{ y\in \mathbb {Q}:y<\sqrt{2}~~\hbox {and}~~\sqrt{2}-y<\frac{1}{4}(\sqrt{2}-x)\right\} , \\&\quad \hbox {for}~~x\in \mathbb {Q}~~\hbox {and}~~x>\sqrt{2}~~\hbox {let}~~Tx\in \left\{ y\in \mathbb {Q}:y>\sqrt{2}~~\hbox {and}~~y-\sqrt{2}<\frac{1}{4}(x-\sqrt{2})\right\} . \end{aligned}$$

Since, \(\vert x - Tx \vert> \frac{3}{4}\vert \sqrt{2}-x\vert >0\) for \(x\in \mathbb {Q}\), T is fixed point free.

Case 1. \(a,b\in \mathbb {Q}\) and \(a<\sqrt{2}<b\). Then, \(\vert Ta-Tb\vert <\frac{1}{4}(b-a)\) and \(\vert a-Ta\vert +\vert b-Tb\vert >\frac{3}{4}(b-a)\). Thus

$$\begin{aligned} \vert Ta - Tb\vert \leqslant \frac{1}{3}\cdot \{\vert a- Ta\vert + \vert b-Tb\vert \}. \end{aligned}$$

Case 2. \(a,b\in \mathbb {Q}\) and \(a\leqslant b<\sqrt{2}\). Then, \(\vert Ta - Tb\vert <\frac{1}{4}(\sqrt{2}-a)\) and \(\vert a-Ta\vert + \vert b-Tb\vert >\frac{3}{4}(\sqrt{2}-a)+\frac{3}{4}(\sqrt{2}-b)\), so

$$\begin{aligned} \vert Ta - Tb\vert \leqslant \frac{1}{3}\cdot \{\vert a- Ta\vert + \vert b-Tb\vert \}. \end{aligned}$$

Similarly, when \(\sqrt{2}<b\leqslant a\).

Thus, \(T:\mathbb {Q}\rightarrow \mathbb {Q}\) is Kannan mapping without a fixed point, so by Theorem 1.2, \((\mathbb {Q},\vert \cdot \vert )\) is not complete metric space.

A Kannan-type mapping \(T:X\rightarrow X\) such that

$$\begin{aligned} d(Tx,Ty)\leqslant \frac{1}{2}\cdot \{d(x,Tx)+d(y,Ty)\}\quad \hbox {for all}\quad x,y\in X, \end{aligned}$$

in complete metric space (Xd) may not have a fixed point. It can be seen from the following example.

Example 1.4

Let \(X=\mathbb {R}\) with metric \(d_{0-1}(x,y)=\left\{ \begin{array}{rcc} 0~~\hbox {if}~~ x=y,\\ 1~~\hbox {if}~~ x\ne y.\\ \end{array}\right. \) Let \(T:\mathbb {R}\rightarrow \mathbb {R}\) be a mapping defined by \(Tx=x+1\) for \(x\in \mathbb {R}\). Then

$$\begin{aligned} d_{0-1}(Tx,Ty)\leqslant \frac{1}{2}\cdot \{d_{0-1}(x,Tx)+d_{0-1}(y,Ty)\}\quad \hbox {for all}\quad x,y\in \mathbb {R} \end{aligned}$$

and T is fixed point free.

Analogically, even continuous Kannan-type mapping \(T:X \rightarrow X\) such that

$$\begin{aligned}d(Tx,Ty)< \frac{1}{2}\cdot \{d(x,Tx)+d(y,Ty)\}\quad \hbox {for all}\quad x,y\in X\quad \hbox {with}\quad x\ne y, \end{aligned}$$

in complete but noncompact metric space (Xd) may not have a fixed point. It can be seen from the following example (this is the answer to Question 2.4 from [6]).

Example 1.5

(G. Minak, personal communication, 2017). Let \(X=\{1+\frac{1}{n}:n=1,2,\ldots \}\) and define a metric \(d(x,y)=\left\{ \begin{array}{rcc} 0~~\hbox {if}~~ x=y,\\ x+y~~\hbox {if}~~ x\ne y.\\ \end{array}\right. \) Then, (Xd) is complete and noncompact. A mapping \(T:X\rightarrow X\) define by \(T(1+\frac{1}{n})=1+\frac{1}{n+1}\) is continuous and has no fixed point. Moreover, for \(x=1+\frac{1}{n}\), \(y=1+\frac{1}{m}\), we have

$$\begin{aligned} 2\cdot d(Tx,Ty)= & {} 2\Big (2+\frac{1}{n+1}+\frac{1}{m+1}\Big ) \\< & {} 2+\frac{1}{n}+\frac{1}{n+1}+2+\frac{1}{m}+\frac{1}{m+1}= d(x,Tx)+d(y,Ty), \end{aligned}$$

because \(\frac{2}{k+1}<\frac{1}{k}+\frac{1}{k+1}\) for \(k=1,2,\ldots . \)

To ensure the existence of a fixed point for mappings of this type there are needed additional assumptions, see for example, Bogin [2], De Blasi [4], Górnicki [6]. These conditions are not discussed in this paper.

2 Approximating sequence

Let C be a nonempty subset of metric space (Xd) and \(T:C\rightarrow C\) a mapping. Then, a sequence \(\{x_n\}\) is said to be an approximating fixed point sequence of T if \(d(x_n,Tx_n)\rightarrow 0\) as \(n\rightarrow \infty \).

Brouwer [3] argues that only approximating fixed point sequences have a meaning for the intuitionist.

Theorem 2.1

Let (Xd) be a metric space and let T map the closed subset \(M\subset X\) into a compact subset \(C\subset X\). Let T be a mapping such that there exists \(K<1\) satisfying (1). Then, T has a unique fixed point if and only if there exists an approximating fixed point sequence of T.

Proof

Let \(\{x_n\}\subset M\) be an approximating fixed point sequence of T. Since \(Tx_n\) in C, we may assume without loss of generality that \(Tx_n\rightarrow y\in C\) as \(n\rightarrow \infty \). By assumption, we also have \(x_n\rightarrow y\in M\). Then

$$\begin{aligned} d(Ty,y)\leqslant & {} d(Ty,Tx_n)+d(Tx_n,y) \\\leqslant & {} K\cdot \{d(y,Ty)+d(x_n,Tx_n)\}+d(Tx_n,y), \end{aligned}$$

and hence

$$\begin{aligned} d(Ty,y)\leqslant \frac{K}{1-K}d(x_n,Tx_n)+ \frac{1}{1-K}d(Tx_n,y)\rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty \), it follows \(Ty=y\). Of course such the fixed point is exactly one.

\(\square \)

Obviously, the result holds for mapping \(T:M\rightarrow C\) such that there exists \(K<1\) satisfying

$$\begin{aligned} d(Tx,Ty)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)+d(x,y)\}~~\hbox {for all}~~x,y\in M. \end{aligned}$$

Remark 2.2

A mapping \(T:X\rightarrow X\) such that

$$\begin{aligned} d(Tx,Ty)< d(x,Tx)+d(y,Ty)~~\hbox {for all}~~x,y\in X~~\hbox {and}~~x\ne y, \end{aligned}$$

and there exists an approximating fixed point sequence of T, may not have a fixed point, see [6, Example 3.2].

3 Iterations

Very often, together with investigating a mapping \(T:X\rightarrow X\), there is a need to consider the iterates \(T^2=T\circ T\), \(T^3=T^2\circ T=T\circ T^2=T\circ T\circ T,\ldots . \) We use the notation \(T^0=I\), where I is the identity mapping on X. We always have \(T^n\circ T^m=T^{n+m}\) for natural numbers \(n,m=1,2,\ldots . \)

If T is a Kannan mapping on a complete metric space (Xd) with constant K, then \(T^n\), \(n\geqslant 2\), satisfy the following condition

$$\begin{aligned} d(T^nx,T^ny)\leqslant K\cdot \Big (\frac{K}{1-K}\Big )^{n-1}\cdot \{d(x,Tx)+d(y,Ty)\}~~\hbox {for all}~~x,y\in X, \end{aligned}$$

and the unique fixed point of T is also the unique fixed point of \(T^n\).

Consider now the situation in which \(T:X\rightarrow X\) is not necessarily a Kannan mapping, but \(T^N\) is a Kannan mapping for some \(N\geqslant 2\).

Example 3.1

[6] Let \(X=[0,1]\) be with usual metric and \(T:[0,1]\rightarrow [0,1]\) be a mapping defined by \(Tx=\frac{x}{3}\) for \(0\leqslant x<1\) and \(T1=\frac{1}{6}\). T does not satisfy Kannan’s condition because \(\vert T0-T\frac{1}{3}\vert =\frac{1}{2}\{\vert 0-T0\vert +\vert \frac{1}{3} - T\frac{1}{3}\vert \}\), and T is not continuous at \(x=1\). The mapping \(T^2\) is defined by \(T^2x=\frac{x}{9}\) for \(0\leqslant x<1\) and \(T^21=\frac{1}{18}\). Then, \(d(T^2x,T^2y)\leqslant \frac{1}{9}(\vert x\vert +\vert y\vert )\) and \(d(x,T^2x)+d(y,T^2y)\geqslant \frac{8}{9}(\vert x \vert +\vert y\vert )\). Thus

$$\begin{aligned}d(T^2x,T^2y)\leqslant \frac{1}{4}\cdot \{d(x,T^2x)+d(y,T^2y)\}~~\hbox {for}~~x,y\in [0,1],\end{aligned}$$

so \(T^2\) is Kannan mapping.

Therefore, we have a trivial lemma.

Lemma 3.2

Let X be a nonempty set and \(\mathcal {F}\) be a family of mappings

$$\begin{aligned} \mathcal {F}=\{F:X\rightarrow X:~F~\hbox {has a unique fixed point in}~X\}. \end{aligned}$$

If \(T:X\rightarrow X\) is a mapping such that for some integer \(N\geqslant 2\), \(T^N\in \mathcal {F}\) then, T has a unique fixed point.

Hence, we have the following corollaries.

Corollary 3.3

(Kannan [9]) Suppose (Xd) is a complete metric space and suppose \(T:X\rightarrow X\) is a mapping such that for some positive integer \(N\geqslant 2\), \(T^N\) is a mapping such that there exists \(K<\frac{1}{2}\) satisfying for all \(x,y\in X\),

$$\begin{aligned} d(T^Nx,T^Ny)\leqslant K\cdot \{d(x,T^Nx)+d(y,T^Ny)\}. \end{aligned}$$

Then, T has a unique fixed point.

We say \(T:X\rightarrow X\) is asymptotically regular at x if \(\lim \nolimits _{n\rightarrow \infty }d(T^{n+1}x,T^nx)=0\). If T is asymptotically regular at every \(x\in X\), we simply say T is asymptotically regular.

Corollary 3.4

(Górnicki [6]) Suppose (Xd) is a complete metric space and suppose \(T:X\rightarrow X\) is a mapping such that for some positive integer \(N\geqslant 2\), \(T^N\) is asymptotically regular and such that there exists \(K<1\) satisfying for all \(x,y\in X\),

$$\begin{aligned} d(T^Nx,T^Ny)\leqslant K\cdot \{d(x,y)+d(x,T^Nx)+d(y,T^Ny)\}. \end{aligned}$$

Then, T has a unique fixed point.

Corollary 3.5

(De Blasi [4]) Suppose \((H,\Vert \cdot \Vert )\) is a Hilbert space, \(C\subset H\) is a nonempty weakly closed and suppose \(T:C\rightarrow C\) is a mapping such that for some positive integer \(N\geqslant 2\), \(T^N:C\rightarrow C\) is continuous, asymptotically regular and satisfies for all \(x,y\in C\),

$$\begin{aligned} \Vert T^Nx-T^Ny\Vert \leqslant \Vert x-T^Nx\Vert +\Vert y-T^Ny\Vert . \end{aligned}$$

Then, T has a unique fixed point.

Now, we prove the following

Lemma 3.6

Let (Xd) be a metric space, \(N\geqslant 2\) a positive integer and \(K<\frac{1}{2}\). Let \(T:X\rightarrow X\) be a mapping such that for all \(x,y\in X\) we have

$$\begin{aligned} d(T^Nx,T^Ny)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}. \end{aligned}$$
(2)

If there is an \(x\in X\) such that \(T^Nx=x\), then x is a unique fixed point of T.

Proof

Let \(x\in X\) and \(T^Nx=x\). Then, by (2),

$$\begin{aligned} d(x,Tx)=d(T^Nx,T^{N+1}x)\leqslant K\cdot \{d(x,Tx)+d(Tx,T^2x)\}, \end{aligned}$$

so

$$\begin{aligned} d(x,Tx)\leqslant \frac{K}{1-K}d(Tx,T^2x). \end{aligned}$$

Next,

$$\begin{aligned} d(Tx,T^2x)=d(T^{N+1}x,T^{N+2}x)\leqslant K\cdot \{d(Tx,T^2x)+d(T^2x,T^3x)\}, \end{aligned}$$

so

$$\begin{aligned} d(Tx,T^2x)\leqslant \frac{K}{1-K}d(T^2x,T^3x), \end{aligned}$$

etc. Similarly

$$\begin{aligned} d(T^{N-2}x,T^{N-1}x)\leqslant \frac{K}{1-K}d(T^{N-1}x,T^Nx), \end{aligned}$$

and finally

$$\begin{aligned} d(T^{N-1}x,T^Nx)= & {} d(T^{N+(N-1)}x, T^{N+N}x) \\\leqslant & {} K\cdot \{d(T^{N-1}x,T^Nx)+d(T^Nx,T^{N+1}x)\}, \end{aligned}$$

so

$$\begin{aligned} d(T^{N-1}x, T^Nx)\leqslant \frac{K}{1-K}d(x,Tx). \end{aligned}$$

But then

$$\begin{aligned} d(x,Tx)\leqslant \Big (\frac{K}{1-K}\Big )^N\cdot d(x,Tx). \end{aligned}$$

Since \(K<\frac{ 1}{2}\), \(x=Tx\).

Assume \(x,y\in X\) satisfy \(Tx=x\) and \(Ty=y\). Then \(d(x,y)=d(T^Nx,T^Ny)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}=0\), so \(x=y\). \(\square \)

In this situation, it is obvious question: Does there exist a fixed point of T if T satisfies (2)? More generally conjecture is inspired by Generalized Banach Contraction Conjecture (see: [7, 8, 10, 15]). Is that true?

Conjecture 3.7

Let (Xd) be a complete metric space, \(K<\frac{1}{2}\), and \(T:X\rightarrow X\). Let J be a set of positive integers. Assume that for each pair \(x,y\in X\),

$$\begin{aligned} \inf \{d(T^ix,T^iy):i\in J\}\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}. \end{aligned}$$

Then T has a fixed point.

Kannan’s theorem is simply the case \(J=\{1\}\).

Now, we give an extension of Lemma 3.6.

Lemma 3.8

Let (Xd) be a metric space, J a set of positive integers, and \(K<\frac{1}{2}\). Let \(T:X\rightarrow X\) be a mapping such that for all \(x,y\in X\) we have

$$\begin{aligned} \inf \{d(T^ix,T^iy):i\in J\}\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}. \end{aligned}$$

If there is an \(x\in X\) such that \(T^Nx=x\), then x is a unique fixed point of T.

Proof

(see [7, Lemma 1]). Note that for each integer \(i\in \{0,1,\ldots ,N-1\}\) there is an integer \(j_i\in J\) such that

$$\begin{aligned} d\left( T^{j_i}T^ix,T^{j_i}T^{i+1}x\right) \leqslant K\cdot \left\{ d\left( T^ix,T^{i+1}x\right) +d(T^{i+1}x,T^{i+2}x)\right\} . \end{aligned}$$

Since \(T^Nx=x\), we can find a sequence \(\{a_i:i=1,2,\ldots \}\subset \{0,1,2,\ldots ,N-1\}\) such that

$$\begin{aligned} d(T^{a_i}x,T^{a_i+1}x)\leqslant K\cdot \{d(T^{a_{i-1}}x,T^{a_{i-1}+1}x)+d(T^{a_i}x,T^{a_i+1}x)\}, \end{aligned}$$

ie.

$$\begin{aligned} d(T^{a_i}x,T^{a_i+1}x)\leqslant \frac{K}{1-K}\cdot d(T^{a_{i-1}}x,T^{a_{i-1}+1}x) \end{aligned}$$

as follows; define \(a_0=0\), and for \(i\geqslant 1\), apply \(T^{j_{a_{i-1}}}\) to the pair \(T^{a_{i-1}}x\) and \(T^{a_{i-1}+1}x\). \(a_i\) is then defined as the remainder obtained when dividing \(a_{i-1}+j_{a_{i-1}}\) by N. Since the \(a_i\) are contained in the finite set \(\{0,1,2,\ldots ,N-1\}\), there are integers i and n such that \(a_{i+n}=a_i\). But then,

$$\begin{aligned} d(T^{a_i}x,T^{a_i+1}x)=d(T^{a_{i+n}}x,T^{a_{i+n}+1}x)\leqslant \Big (\frac{K}{1-K}\Big )^n\cdot d(T^{a_i}x,T^{a_i+1}x). \end{aligned}$$

Since \(K<\frac{1}{2}\), \(T^{a_i+1}x=T^{a_i}x\), so \(T^{a_i}x\) is a fixed point of T. Note that \(N-a_i>0\) and \(T^{a_i}x\) is also a fixed point of \(T^{N-a_i}\), which means that \(T^{a_i}x=T^Nx=x\). So x is a fixed point of T.

Assume that \(x,y\in X\) satisfy \(Tx=x\) and \(Ty=y\). Then there exists \(j\in J\) such that \(d(T^jx,T^jy)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}\). Since x and y are fixed points of T, this implies that \(d(x,y)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}=0.\) Hence, \(x=y\). \(\square \)

4 Localization

It may be the case that \(T:X\rightarrow X\) is not Kannan’s mapping on the whole space X, but rather Kannan’s mapping on some neighbourhood of a given point. In this case, we have the following result.

Theorem 4.1

Let (Xd) be a complete metric space and let \(B(z,r)=\{x\in X:d(z,x)\leqslant r\}\), where \(z\in X\) and \(r>0\). Let \(T:B(z,r)\rightarrow X\) be a mapping such that there exists \(K<\frac{1}{2}\) satisfying

$$\begin{aligned} d(Tx,Ty)\leqslant K\cdot \{d(x,Tx)+d(y,Ty)\}~~\text {for all}~x,y\in B(z,r). \end{aligned}$$

Further, assume that

$$\begin{aligned} d(z,Tz)\leqslant \Big (1-\frac{3K}{1+K}\Big )r. \end{aligned}$$

Then, T has a unique fixed point in B(zr).

Proof

Let \(x\in B(z,r)\), then

$$\begin{aligned} d(z,Tx)\leqslant & {} d(z,Tz)+d(Tz,Tx) \\\leqslant & {} d(z,Tz)+K\cdot \{d(z,Tz)+d(x,Tx)\} \\\leqslant & {} (1+K)d(z,Tz)+K\cdot \{d(x,z)+d(z,Tx)\}, \end{aligned}$$

so

$$\begin{aligned} (1-K)d(z,Tx)\leqslant (1+K)d(z,Tz)+Kd(x,z), \end{aligned}$$

and

$$\begin{aligned} d(z,Tz)\leqslant & {} \frac{1+K}{1-K}d(z,Tz)+\frac{K}{1-K}d(x,z) \\\leqslant & {} \frac{1+K}{1-K}\Big (1- \frac{3K}{1+K}\Big )r+\frac{K}{1-K}r=r, \end{aligned}$$

and hence \(T:B(z,r)\rightarrow B(z,r)\). Since B(zr) is a complete metric space, using Theorem 1.1, T has a unique fixed point \(v\in B(z,r)\). \(\square \)

5 Control function

We now consider some (important) generalization of Kannan theorem in which the constant \(K<\frac{1}{2}\) is replaced by some real-valued control function. A presented idea is due to Geraghty [5].

Let \(\mathcal {S}\) denote the class of functions which satisfy the simple condition

$$\begin{aligned} \mathcal {S}=\left\{ f:(0,\infty )\rightarrow [0,\frac{1}{2}): f(t_n)\rightarrow \frac{1}{2}\Rightarrow t_n\rightarrow 0~~\hbox {as}~~n\rightarrow \infty \right\} . \end{aligned}$$

We do not assume that f is continuous in any sense.

Theorem 5.1

Let (Xd) be a complete metric space, let \(T:X\rightarrow X\), and suppose there exists \(f\in \mathcal {S}\) such that for each \(x,y\in X\) with \(x\ne y\),

$$\begin{aligned} d(Tx,Ty)\leqslant f(d(x,y))\cdot \{d(x,Tx)+d(y,Ty)\}. \end{aligned}$$
(3)

Then, T has a unique fixed point \(v\in X\) and for any \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v.

Proof

Fix \(x_0\in X\) and let \(x_n=Tx_{n-1}\), \(n=1,2,\ldots . \) Assume that there exists \(p\in \mathbb {N}\) such that \(T^px_0=T^{p+1}x_0\). Since \(T^px_0=T(T^px_0)\), so \(T^px_0\) is the fixed point of T. Therefore, suppose that \(T^nx_0\ne T^{n+1}x_0\) for all \(n\geqslant 0\).

Step 1. \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},x_n)=0\).

Since T satisfies (3), we have

$$\begin{aligned} d(x_{n+1},x_n)= & {} d(T^{n+1}x_0,T^nx_0) \\\leqslant & {} \frac{1}{2}\cdot \left\{ d(T^nx_0,T^{n+1}x_0)+d(T^{n-1}x_0,T^nx_0)\right\} \\= & {} \frac{1}{2}\cdot \{d(x_{n+1},x_n)+d(x_n,x_{n-1})\}, \end{aligned}$$

so

$$\begin{aligned} d(x_{n+1},x_n)\leqslant d(x_n,x_{n-1}). \end{aligned}$$

The sequence \(\{d(x_{n+1},x_n)\}\) is monotone decreasing and bounded below, so \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},x_n)=\gamma \geqslant 0\). Assume \(\gamma \ne 0\). Then by (3),

$$\begin{aligned} d(x_{n+2},x_{n+1})\leqslant & {} f(d(x_{n+1},x_n))\cdot \left\{ d(x_{n+1},x_{n+2})+d(x_n,x_{n+1})\right\} , \\ \frac{d(x_{n+2},x_{n+1})}{d(x_{n+1},x_{n+2})+d(x_n,x_{n+1})}\leqslant & {} f(d(x_{n+1},x_n)), \quad n=1,2,\ldots . \end{aligned}$$

Letting \(n\rightarrow \infty \), we see that \(\frac{1}{2}\leqslant \lim \nolimits _{n\rightarrow \infty }f(d(x_{n+1},x_n))\), and since \(f\in \mathcal {S}\) this in turn implies \(\gamma =0\). This contradiction establishes step 1.

Step 2. \(\{x_n\}\) is a Cauchy sequence.

Suppose \(m>n\). By condition (3) and step 1, we get for \(m>n\),

$$\begin{aligned} d(x_{n+1},x_{m+1})\leqslant & {} f(d(x_n,x_m))\cdot \{d(x_n,x_{n+1})+d(x_m,x_{m+1})\} \\\leqslant & {} \frac{1}{2}\cdot \{d(x_n,x_{n+1})+d(x_m,x_{m+1})\}\rightarrow 0, \end{aligned}$$

as \(n\rightarrow \infty ,\) so \(\{x_n\}\) is a Cauchy sequence.

Since X is complete and since \(\{T^nx_0\}\) is a Cauchy sequence, \(\lim \nolimits _{n\rightarrow \infty }T^nx_0=v\in X\). Then

$$\begin{aligned} d(Tv,v)\leqslant & {} d(Tv,Tx_n)+d(Tx_n,v) \\\leqslant & {} f(d(v,x_n))\cdot \{d(v,Tv)+d(x_n,Tx_n)\}+d(x_{n+1},v) \end{aligned}$$

and

$$\begin{aligned} d(Tv,v)\leqslant \frac{f(d(v,x_n))}{1-f(d(v,x_n))}\cdot d(x_n,x_{n+1})+\frac{1}{1-f(d(v,x_n))}\cdot d(x_{n+1},v)\rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty \). Hence, \(Tv=v\). It is obvious that v is unique. \(\square \)

Let \(\mathcal {U}\) denote the class of functions which satisfy the condition

$$\begin{aligned} \mathcal {U}=\left\{ f:(0,\infty )\rightarrow [0,\frac{1}{3}): f(t_n)\rightarrow \frac{1}{3}\Rightarrow t_n\rightarrow 0~~\hbox {as}~~n\rightarrow \infty \right\} . \end{aligned}$$

We do not assume that f is continuous in any sense.

Theorem 5.2

Let (Xd) be a complete metric space, let \(T:X\rightarrow X\), and suppose there exists \(f\in \mathcal {U}\) such that for each \(x,y\in X\) with \(x\ne y\),

$$\begin{aligned} d(Tx,Ty)\leqslant f(d(x,y))\cdot \{d(x,Tx)+d(y,Ty)+d(x,y)\}. \end{aligned}$$
(4)

Then T has a unique fixed point \(v\in X\) and for any \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v.

Proof

Fix \(x_0\in X\) and let \(x_n=Tx_{n-1}\), \(n=1,2,\ldots . \) Assume that there exists \(p\in \mathbb {N}\) such that \(T^px_0=T^{p+1}x_0\). Since \(T^px_0=T(T^px_0)\), so \(T^px_0\) is the fixed point of T. Therefore suppose that \(T^nx_0\ne T^{n+1}x_0\) for all \(n\geqslant 0\).

Step 1. \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},x_n)=0\).

Since T satisfies (4), we have

$$\begin{aligned} d(x_{n+1},x_n)= & {} d\left( T^{n+1}x_0,T^nx_0\right) \\\leqslant & {} \frac{1}{3}\cdot \left\{ d\left( T^nx_0,T^{n+1}x_0\right) +d\left( T^{n-1}x_0,T^nx_0\right) + d\left( T^nx_0,T^{n-1}x_0\right) \right\} \\= & {} \frac{1}{3}\cdot \left\{ d(x_{n+1},x_n)+2d(x_n,x_{n-1})\right\} , \end{aligned}$$

so

$$\begin{aligned} d(x_{n+1},x_n)\leqslant d(x_n,x_{n-1}). \end{aligned}$$

The sequence \(\{d(x_{n+1},x_n)\}\) is monotone decreasing and bounded below, so \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},x_n)=\gamma \geqslant 0\). Assume \(\gamma \ne 0\). Then by (4),

$$\begin{aligned}&\displaystyle d(x_{n+2},x_{n+1}) \leqslant f(d(x_{n+1},x_n))\cdot \left\{ d(x_{n+1},x_{n+2}) +d(x_n,x_{n+1})+d(x_{n+1},x_n)\right\} , \\&\displaystyle \frac{d(x_{n+2},x_{n+1})}{d(x_{n+1},x_{n+2})+2d(x_n,x_{n+1})}\leqslant f(d(x_{n+1},x_n)), \quad n=1,2,\ldots . \end{aligned}$$

Letting \(n\rightarrow \infty \), we see that \(\frac{1}{3}\leqslant \lim \nolimits _{n\rightarrow \infty }f(d(x_{n+1},x_n))\), and since \(f\in \mathcal {U}\) this in turn implies \(\gamma =0\). This contradiction establishes step 1.

Step 2. \(\{x_n\}\) is a Cauchy sequence.

Suppose \(m>n\). By condition (4) and step 1, we get for \(m>n\),

$$\begin{aligned} d(x_{n+1},x_{m+1})\leqslant & {} f(d(x_n,x_m)) \cdot \left\{ d(x_n,x_{n+1})+d(x_m,x_{m+1})+d(x_n,x_m)\right\} \\\leqslant & {} \frac{1}{3}\cdot \left\{ d(x_n,x_{n+1})+d(x_m,x_{m+1})+d(x_n,x_{n+1}) \right. \\&\left. +\, d(x_{n+1},x_{m+1})+d(x_{m+1},x_m)\right\} , \end{aligned}$$

and

$$\begin{aligned} d(x_{n+1},x_{m+1})\leqslant \{d(x_{n+1},x_n)+d(x_{m+1},x_m)\}\rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty ,\) so \(\{x_n\}\) is a Cauchy sequence.

Since X is complete and since \(\{T^nx_0\}\) is a Cauchy sequence, \(\lim \nolimits _{n\rightarrow \infty } T^nx_0=v\in X\). Then

$$\begin{aligned} d(v,Tv)\leqslant & {} d(v,T^{n+1}x_0)+d(T^{n+1}x_0,Tv) \\\leqslant & {} d\left( v,T^{n+1}x_0\right) +f\left( d(T^nx_0,v)\right) \\&\cdot \left\{ d\left( T^nx_0,T^{n+1}x_0\right) +d(v,Tv)+d\left( T^nx_0,v\right) \right\} , \end{aligned}$$

and

$$\begin{aligned}{}[1-f(d(T^nx_0,v))]\cdot d(Tv,v)\leqslant & {} d(v,T^{n+1}x_0)+ f(d(T^nx_0,v))\\&\cdot \left\{ d\left( T^nx_0,T^{n+1}x_0\right) +d\left( T^nx_0,v\right) \right\} , \end{aligned}$$

and

$$\begin{aligned} d(Tv,v)\leqslant & {} \dfrac{1}{1-f(d(T^nx_0,v))}\cdot d(v, T^{n+1}x_0) \\&+\, \dfrac{f\left( d(T^nx_0,v)\right) }{1-f\left( d(T^nx_0,v)\right) }\cdot \left\{ d\left( T^nx_0,T^{n+1}x_0\right) +d\left( T^nx_0,v\right) \right\} \rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty \). Hence, \(Tv=v\). Suppose u is another fixed point of T. Then

$$\begin{aligned} d(u,v)=d(Tu,Tv)\leqslant \frac{1}{3}\cdot \{d(u,Tu)+d(v,Tv)+d(u,v)\}, \end{aligned}$$

and

$$\begin{aligned} \frac{2}{3}d(u,v)\leqslant \frac{1}{3}\cdot \{d(u,Tu)+d(v,Tv)\}=0, \end{aligned}$$

so \(d(u,v)=0\). Hence, T has a unique fixed point \(v\in X\), so for each \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v. \(\square \)

This theorem “lies between” Banach’s theorem and Kannan’s theorem. This is illustrated by the following example.

Example 5.3

Let \(X=[0,1]\) be endowed with the Euclidean metric. Consider \(Tx=\frac{x}{3}\) for \(0\leqslant x<1\) and \(T1=\frac{1}{6}\). T does not satisfy Banach’s theorem and T does not satisfy Kannan’s condition. But T satisfies for all \(x,y\in X\) the following condition

$$\begin{aligned} d(Tx,Ty)\leqslant f(d(x,y))\cdot \{d(x,Tx)+d(y,Ty)+d(x,y)\}, \end{aligned}$$

where \(f(t)=-\frac{t}{12}+\frac{1}{3}\) for \(0<t\leqslant 1\), \(f(0)=\frac{1}{4}\), and \(v=0\) is the unique fixed point of T.

Other generalizations Kannan’s fixed point theorem are discussed in [1, 12,13,14].

6 Asymptotic regularity and control function

Let \(\mathcal {V}\) denote the class of functions which satisfy the condition

$$\begin{aligned} \mathcal {V}=\left\{ f:(0,\infty )\rightarrow [0,1): f(t_n)\rightarrow 1\Rightarrow t_n\rightarrow 0~~\hbox {as}~~n\rightarrow \infty \right\} . \end{aligned}$$

We do not assume that f is continuous in any sense.

Remark 6.1

The class of Rakotch functions [11],

$$\begin{aligned} \left\{ \alpha :(0,\infty )\rightarrow [0,1):~\alpha (t)~\hbox {is a decreasing function of}~t\right\} \end{aligned}$$

is in the class \(\mathcal {V}\).

Theorem 6.2

Let (Xd) be a complete metric space and let \(T:X\rightarrow X\) be an asymptotically regular and continuous mapping. Suppose there exists \(f\in \mathcal {V}\) such that for each \(x,y\in X\) with \(x\ne y\),

$$\begin{aligned} d(Tx,Ty)\leqslant f(d(x,y))\cdot \{d(x,Tx)+d(y,Ty)+d(x,y)\}. \end{aligned}$$
(5)

Then, T has a unique fixed point \(v\in X\) and for any \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v.

Proof

Let \(x\in X\) and define a sequence \(\{x_n=T^nx\}\), \(n=0,1,2,\ldots . \) Assume that there exists \(n_0\) such that \(T^{n_0}x=T^{n_0+1}x\), then \(T^{n_0}x\) is a fixed point of T. Suppose \(T^nx\ne T^{n+1}x\) for all \(n\geqslant 0\).

Step 1. \(\{x_n\}\) is a Cauchy sequence.

Assume \(\limsup \nolimits _{m,n\rightarrow \infty }d(x_n,x_m)>0\). By triangle inequality and (5),

$$\begin{aligned} d(x_n,x_m)\leqslant & {} d(x_n,x_{n+1})+d(x_{n+1},x_{m+1})+d(x_{m+1},x_m) \\\leqslant & {} d(x_n,x_{n+1}) +f(d(x_n,x_m))\\&\cdot \, \{d(x_n,x_{n+1})+d(x_m,x_{m+1})+d(x_n,x_m)\} +d(x_{m+1},x_m), \end{aligned}$$

so

$$\begin{aligned} \frac{d(x_n,x_m)}{d(x_n,x_{n+1})+d(x_m,x_{m+1})}\leqslant \frac{1+f(d(x_n,x_m))}{1-f(d(x_n,x_m))}. \end{aligned}$$

Under the assumption \(\limsup \nolimits _{m,n\rightarrow \infty }d(x_n,x_m)>0\), the asymptotic regularity now implies

$$\begin{aligned} \limsup _{n,m\rightarrow \infty }\frac{1+f(d(x_n,x_m))}{1-f(d(x_n,x_m))}=+\infty , \end{aligned}$$

from which

$$\begin{aligned} \limsup _{n,m\rightarrow \infty }f(d(x_n,x_m))=1. \end{aligned}$$

But since \(f\in \mathcal {V}\) this implies \(\limsup \nolimits _{m,n\rightarrow \infty }d(x_n,x_m)=0\) which is a contradiction.

Step 2. Existence and uniqueness of fixed points.

Since X is complete and since \(\{x_n=T^nx\}\) is a Cauchy sequence, \(\lim \nolimits _{n\rightarrow \infty }T^nx=v\in X\). Since T is continuous, \(Tv=v\).

If \(Tv=v\), \(Tu=u\) and \(d(u,v)>0\), then by (5), we have

$$\begin{aligned} d(u,v)= & {} d(Tu,Tv)\leqslant f((u,v))\cdot \{d(u,Tu)+d(v,Tv)+d(u,v)\} \\\leqslant & {} f(d(u,v))\cdot d(u,v), \end{aligned}$$

so

$$\begin{aligned} 1\leqslant f(d(u,v)), \end{aligned}$$

which is a contradiction. Hence, T has a unique fixed point and for each \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v. \(\square \)

Corollary 6.3

Let (Xd) be a complete metric space and let \(T:X\rightarrow X\) be an asymptotically regular and continuous mapping. Suppose there exists \(f\in \mathcal {V}\) such that for each \(x,y\in X\),

$$\begin{aligned} d(Tx,Ty)\leqslant f(d(x,y))\cdot \{d(x,Tx)+d(y,Ty))\}. \end{aligned}$$

Then T has a unique fixed point \(v\in X\) and for any \(x\in X\) the sequence of iterates \(\{T^nx\}\) converges to v.