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1. Completeness

Let (X, d) be a metric space. A mapping T : X → X is called a Kannan
mapping if there exists K < 1

2 such that for all x, y ∈ X,

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)}. (1)

In 1968, Kannan [9] proved the following fixed point theorem, see [6].

Theorem 1.1. (Kannan) Let (X, d) be a complete metric space and let T :
X → X be a Kannan mapping. Then T has a unique fixed point v ∈ X and
for any x ∈ X the sequence of iterates {Tnx} converges to v.

Using Kannan’s mappings Subrahmanyam [16] proved the following
characterization of complete metric spaces:

Theorem 1.2. A metric space (X, d) is complete if and only if every Kannan
mapping T : X → X has a fixed point.

Here is a simple use of this result.

Example 1.3. Let Q be endowed with the Euclidean metric and T : Q → Q

be a mapping defined by:

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-018-0500-2&domain=pdf
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for x ∈ Q and x <
√

2 let Tx ∈
{
y ∈ Q : y <

√
2 and

√
2 − y <

1

4
(
√

2 − x)

}
,

for x ∈ Q and x >
√

2 let Tx ∈
{
y ∈ Q : y >

√
2 and y −

√
2 <

1

4
(x −

√
2)

}
.

Since, |x − Tx| > 3
4 |√2 − x| > 0 for x ∈ Q, T is fixed point free.

Case 1. a, b ∈ Q and a <
√
2 < b. Then, |Ta−Tb| < 1

4 (b−a) and |a−Ta|+
|b − Tb| > 3

4 (b − a). Thus

|Ta − Tb| � 1
3

· {|a − Ta| + |b − Tb|}.

Case 2. a, b ∈ Q and a � b <
√
2. Then, |Ta − Tb| < 1

4 (
√
2 − a) and

|a − Ta| + |b − Tb| > 3
4 (

√
2 − a) + 3

4 (
√
2 − b), so

|Ta − Tb| � 1
3

· {|a − Ta| + |b − Tb|}.

Similarly, when
√
2 < b � a.

Thus, T : Q → Q is Kannan mapping without a fixed point, so by Theo-
rem 1.2, (Q, | · |) is not complete metric space.

A Kannan-type mapping T : X → X such that

d(Tx, Ty) � 1
2

· {d(x, Tx) + d(y, Ty)} for all x, y ∈ X,

in complete metric space (X, d) may not have a fixed point. It can be seen
from the following example.

Example 1.4. Let X = R with metric d0−1(x, y) =
{
0 if x = y,
1 if x �= y.

Let T : R →
R be a mapping defined by Tx = x + 1 for x ∈ R. Then

d0−1(Tx, Ty) � 1
2

· {d0−1(x, Tx) + d0−1(y, Ty)} for all x, y ∈ R

and T is fixed point free.

Analogically, even continuous Kannan-type mapping T : X → X such
that

d(Tx, Ty) <
1
2

· {d(x, Tx) + d(y, Ty)} for all x, y ∈ X with x �= y,

in complete but noncompact metric space (X, d) may not have a fixed point.
It can be seen from the following example (this is the answer to Question 2.4
from [6]).

Example 1.5. (G. Minak, personal communication, 2017). Let X = {1 + 1
n :

n = 1, 2, . . .} and define a metric d(x, y) =
{

0 if x = y,
x + y if x �= y.

Then, (X, d) is

complete and noncompact. A mapping T : X → X define by T (1 + 1
n ) =
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1 + 1
n+1 is continuous and has no fixed point. Moreover, for x = 1 + 1

n ,
y = 1 + 1

m , we have

2 · d(Tx, Ty) = 2
(
2 +

1
n + 1

+
1

m + 1

)

< 2 +
1
n
+

1
n + 1

+ 2 +
1
m

+
1

m + 1
= d(x, Tx) + d(y, Ty),

because 2
k+1 < 1

k + 1
k+1 for k = 1, 2, . . . .

To ensure the existence of a fixed point for mappings of this type there
are needed additional assumptions, see for example, Bogin [2], De Blasi [4],
Górnicki [6]. These conditions are not discussed in this paper.

2. Approximating sequence

Let C be a nonempty subset of metric space (X, d) and T : C → C a mapping.
Then, a sequence {xn} is said to be an approximating fixed point sequence of
T if d(xn, Txn) → 0 as n → ∞.

Brouwer [3] argues that only approximating fixed point sequences have
a meaning for the intuitionist.

Theorem 2.1. Let (X, d) be a metric space and let T map the closed subset
M ⊂ X into a compact subset C ⊂ X. Let T be a mapping such that there
exists K < 1 satisfying (1). Then, T has a unique fixed point if and only if
there exists an approximating fixed point sequence of T .

Proof. Let {xn} ⊂ M be an approximating fixed point sequence of T . Since
Txn in C, we may assume without loss of generality that Txn → y ∈ C as
n → ∞. By assumption, we also have xn → y ∈ M . Then

d(Ty, y) � d(Ty, Txn) + d(Txn, y)
� K · {d(y, Ty) + d(xn, Txn)} + d(Txn, y),

and hence

d(Ty, y) � K

1 − K
d(xn, Txn) +

1
1 − K

d(Txn, y) → 0

as n → ∞, it follows Ty = y. Of course such the fixed point is exactly one.
�

Obviously, the result holds for mapping T : M → C such that there
exists K < 1 satisfying

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty) + d(x, y)} for all x, y ∈ M.

Remark 2.2. A mapping T : X → X such that

d(Tx, Ty) < d(x, Tx) + d(y, Ty) for all x, y ∈ X and x �= y,

and there exists an approximating fixed point sequence of T , may not have
a fixed point, see [6, Example 3.2].



20 Page 4 of 12 J. Górnicki JFPTA

3. Iterations

Very often, together with investigating a mapping T : X → X, there is a need
to consider the iterates T 2 = T ◦T , T 3 = T 2 ◦T = T ◦T 2 = T ◦T ◦T, . . . . We
use the notation T 0 = I, where I is the identity mapping on X. We always
have Tn ◦ Tm = Tn+m for natural numbers n,m = 1, 2, . . . .

If T is a Kannan mapping on a complete metric space (X, d) with con-
stant K, then Tn, n � 2, satisfy the following condition

d(Tnx, Tny) � K ·
( K

1 − K

)n−1

· {d(x, Tx) + d(y, Ty)} for all x, y ∈ X,

and the unique fixed point of T is also the unique fixed point of Tn.
Consider now the situation in which T : X → X is not necessarily a

Kannan mapping, but TN is a Kannan mapping for some N � 2.

Example 3.1. [6] Let X = [0, 1] be with usual metric and T : [0, 1] → [0, 1] be
a mapping defined by Tx = x

3 for 0 � x < 1 and T1 = 1
6 . T does not satisfy

Kannan’s condition because |T0−T 1
3 | = 1

2{|0−T0|+ |13 −T 1
3 |}, and T is not

continuous at x = 1. The mapping T 2 is defined by T 2x = x
9 for 0 � x < 1

and T 21 = 1
18 . Then, d(T 2x, T 2y) � 1

9 (|x|+ |y|) and d(x, T 2x) + d(y, T 2y) �
8
9 (|x| + |y|). Thus

d(T 2x, T 2y) � 1
4

· {d(x, T 2x) + d(y, T 2y)} for x, y ∈ [0, 1],

so T 2 is Kannan mapping.

Therefore, we have a trivial lemma.

Lemma 3.2. Let X be a nonempty set and F be a family of mappings

F = {F : X → X : F has a unique fixed point in X}.

If T : X → X is a mapping such that for some integer N � 2, TN ∈ F then,
T has a unique fixed point.

Hence, we have the following corollaries.

Corollary 3.3. (Kannan [9]) Suppose (X, d) is a complete metric space and
suppose T : X → X is a mapping such that for some positive integer N � 2,
TN is a mapping such that there exists K < 1

2 satisfying for all x, y ∈ X,

d(TNx, TNy) � K · {d(x, TNx) + d(y, TNy)}.

Then, T has a unique fixed point.

We say T : X → X is asymptotically regular at x if limn→∞ d(Tn+1x,
Tnx) = 0. If T is asymptotically regular at every x ∈ X, we simply say T is
asymptotically regular.

Corollary 3.4. (Górnicki [6]) Suppose (X, d) is a complete metric space and
suppose T : X → X is a mapping such that for some positive integer N � 2,
TN is asymptotically regular and such that there exists K < 1 satisfying for
all x, y ∈ X,

d(TNx, TNy) � K · {d(x, y) + d(x, TNx) + d(y, TNy)}.

Then, T has a unique fixed point.
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Corollary 3.5. (De Blasi [4]) Suppose (H, ‖ · ‖) is a Hilbert space, C ⊂ H is
a nonempty weakly closed and suppose T : C → C is a mapping such that
for some positive integer N � 2, TN : C → C is continuous, asymptotically
regular and satisfies for all x, y ∈ C,

‖TNx − TNy‖ � ‖x − TNx‖ + ‖y − TNy‖.

Then, T has a unique fixed point.

Now, we prove the following

Lemma 3.6. Let (X, d) be a metric space, N � 2 a positive integer and K <
1
2 . Let T : X → X be a mapping such that for all x, y ∈ X we have

d(TNx, TNy) � K · {d(x, Tx) + d(y, Ty)}. (2)

If there is an x ∈ X such that TNx = x, then x is a unique fixed point of T .

Proof. Let x ∈ X and TNx = x. Then, by (2),

d(x, Tx) = d(TNx, TN+1x) � K · {d(x, Tx) + d(Tx, T 2x)},

so

d(x, Tx) � K

1 − K
d(Tx, T 2x).

Next,

d(Tx, T 2x) = d(TN+1x, TN+2x) � K · {d(Tx, T 2x) + d(T 2x, T 3x)},

so

d(Tx, T 2x) � K

1 − K
d(T 2x, T 3x),

etc. Similarly

d(TN−2x, TN−1x) � K

1 − K
d(TN−1x, TNx),

and finally

d(TN−1x, TNx) = d(TN+(N−1)x, TN+Nx)

� K · {d(TN−1x, TNx) + d(TNx, TN+1x)},

so

d(TN−1x, TNx) � K

1 − K
d(x, Tx).

But then

d(x, Tx) �
( K

1 − K

)N

· d(x, Tx).

Since K < 1
2 , x = Tx.

Assume x, y ∈ X satisfy Tx = x and Ty = y. Then d(x, y) = d(TNx,
TNy) � K · {d(x, Tx) + d(y, Ty)} = 0, so x = y. �

In this situation, it is obvious question: Does there exist a fixed point
of T if T satisfies (2)? More generally conjecture is inspired by Generalized
Banach Contraction Conjecture (see: [7,8,10,15]). Is that true?
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Conjecture 3.7. Let (X, d) be a complete metric space, K < 1
2 , and T : X →

X. Let J be a set of positive integers. Assume that for each pair x, y ∈ X,

inf{d(T ix, T iy) : i ∈ J} � K · {d(x, Tx) + d(y, Ty)}.

Then T has a fixed point.

Kannan’s theorem is simply the case J = {1}.
Now, we give an extension of Lemma 3.6.

Lemma 3.8. Let (X, d) be a metric space, J a set of positive integers, and
K < 1

2 . Let T : X → X be a mapping such that for all x, y ∈ X we have

inf{d(T ix, T iy) : i ∈ J} � K · {d(x, Tx) + d(y, Ty)}.

If there is an x ∈ X such that TNx = x, then x is a unique fixed point of T .

Proof. (see [7, Lemma 1]). Note that for each integer i ∈ {0, 1, . . . , N − 1}
there is an integer ji ∈ J such that

d
(
T jiT ix, T jiT i+1x

)
� K · {

d
(
T ix, T i+1x

)
+ d(T i+1x, T i+2x)

}
.

Since TNx = x, we can find a sequence {ai : i = 1, 2, . . .} ⊂ {0, 1, 2, . . . , N−1}
such that

d(T aix, T ai+1x) � K · {d(T ai−1x, T ai−1+1x) + d(T aix, T ai+1x)},

ie.

d(T aix, T ai+1x) � K

1 − K
· d(T ai−1x, T ai−1+1x)

as follows; define a0 = 0, and for i � 1, apply T jai−1 to the pair T ai−1x and
T ai−1+1x. ai is then defined as the remainder obtained when dividing ai−1 +
jai−1 by N . Since the ai are contained in the finite set {0, 1, 2, . . . , N − 1},
there are integers i and n such that ai+n = ai. But then,

d(T aix, T ai+1x) = d(T ai+nx, T ai+n+1x) �
( K

1 − K

)n

· d(T aix, T ai+1x).

Since K < 1
2 , T ai+1x = T aix, so T aix is a fixed point of T . Note that

N − ai > 0 and T aix is also a fixed point of TN−ai , which means that
T aix = TNx = x. So x is a fixed point of T .

Assume that x, y ∈ X satisfy Tx = x and Ty = y. Then there exists
j ∈ J such that d(T jx, T jy) � K · {d(x, Tx) + d(y, Ty)}. Since x and y are
fixed points of T , this implies that d(x, y) � K · {d(x, Tx) + d(y, Ty)} = 0.
Hence, x = y. �

4. Localization

It may be the case that T : X → X is not Kannan’s mapping on the whole
space X, but rather Kannan’s mapping on some neighbourhood of a given
point. In this case, we have the following result.
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Theorem 4.1. Let (X, d) be a complete metric space and let B(z, r) = {x ∈
X : d(z, x) � r}, where z ∈ X and r > 0. Let T : B(z, r) → X be a mapping
such that there exists K < 1

2 satisfying

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)} for all x, y ∈ B(z, r).

Further, assume that

d(z, Tz) �
(
1 − 3K

1 + K

)
r.

Then, T has a unique fixed point in B(z, r).

Proof. Let x ∈ B(z, r), then

d(z, Tx) � d(z, Tz) + d(Tz, Tx)
� d(z, Tz) + K · {d(z, Tz) + d(x, Tx)}
� (1 + K)d(z, Tz) + K · {d(x, z) + d(z, Tx)},

so

(1 − K)d(z, Tx) � (1 + K)d(z, Tz) + Kd(x, z),

and

d(z, Tz) � 1 + K

1 − K
d(z, Tz) +

K

1 − K
d(x, z)

� 1 + K

1 − K

(
1 − 3K

1 + K

)
r +

K

1 − K
r = r,

and hence T : B(z, r) → B(z, r). Since B(z, r) is a complete metric space,
using Theorem 1.1, T has a unique fixed point v ∈ B(z, r). �

5. Control function

We now consider some (important) generalization of Kannan theorem in
which the constant K < 1

2 is replaced by some real-valued control function.
A presented idea is due to Geraghty [5].

Let S denote the class of functions which satisfy the simple condition

S =
{

f : (0,∞) → [0,
1
2
) : f(tn) → 1

2
⇒ tn → 0 as n → ∞

}
.

We do not assume that f is continuous in any sense.

Theorem 5.1. Let (X, d) be a complete metric space, let T : X → X, and
suppose there exists f ∈ S such that for each x, y ∈ X with x �= y,

d(Tx, Ty) � f(d(x, y)) · {d(x, Tx) + d(y, Ty)}. (3)

Then, T has a unique fixed point v ∈ X and for any x ∈ X the sequence of
iterates {Tnx} converges to v.
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Proof. Fix x0 ∈ X and let xn = Txn−1, n = 1, 2, . . . . Assume that there
exists p ∈ N such that T px0 = T p+1x0. Since T px0 = T (T px0), so T px0 is
the fixed point of T . Therefore, suppose that Tnx0 �= Tn+1x0 for all n � 0.
Step 1. limn→∞ d(xn+1, xn) = 0.

Since T satisfies (3), we have

d(xn+1, xn) = d(Tn+1x0, T
nx0)

� 1
2

· {
d(Tnx0, T

n+1x0) + d(Tn−1x0, T
nx0)

}

=
1
2

· {d(xn+1, xn) + d(xn, xn−1)},

so

d(xn+1, xn) � d(xn, xn−1).

The sequence {d(xn+1, xn)} is monotone decreasing and bounded below, so
limn→∞ d(xn+1, xn) = γ � 0. Assume γ �= 0. Then by (3),

d(xn+2, xn+1) � f(d(xn+1, xn)) · {d(xn+1, xn+2) + d(xn, xn+1)} ,
d(xn+2, xn+1)

d(xn+1, xn+2) + d(xn, xn+1)
� f(d(xn+1, xn)), n = 1, 2, . . . .

Letting n → ∞, we see that 1
2 � limn→∞ f(d(xn+1, xn)), and since f ∈ S

this in turn implies γ = 0. This contradiction establishes step 1.
Step 2. {xn} is a Cauchy sequence.

Suppose m > n. By condition (3) and step 1, we get for m > n,

d(xn+1, xm+1) � f(d(xn, xm)) · {d(xn, xn+1) + d(xm, xm+1)}
� 1

2
· {d(xn, xn+1) + d(xm, xm+1)} → 0,

as n → ∞, so {xn} is a Cauchy sequence.
Since X is complete and since {Tnx0} is a Cauchy sequence, limn→∞

Tnx0 = v ∈ X. Then

d(Tv, v) � d(Tv, Txn) + d(Txn, v)
� f(d(v, xn)) · {d(v, Tv) + d(xn, Txn)} + d(xn+1, v)

and

d(Tv, v) � f(d(v, xn))
1 − f(d(v, xn))

· d(xn, xn+1) +
1

1 − f(d(v, xn))
· d(xn+1, v) → 0

as n → ∞. Hence, Tv = v. It is obvious that v is unique. �

Let U denote the class of functions which satisfy the condition

U =
{

f : (0,∞) → [0,
1
3
) : f(tn) → 1

3
⇒ tn → 0 as n → ∞

}
.

We do not assume that f is continuous in any sense.

Theorem 5.2. Let (X, d) be a complete metric space, let T : X → X, and
suppose there exists f ∈ U such that for each x, y ∈ X with x �= y,

d(Tx, Ty) � f(d(x, y)) · {d(x, Tx) + d(y, Ty) + d(x, y)}. (4)
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Then T has a unique fixed point v ∈ X and for any x ∈ X the sequence of
iterates {Tnx} converges to v.

Proof. Fix x0 ∈ X and let xn = Txn−1, n = 1, 2, . . . . Assume that there
exists p ∈ N such that T px0 = T p+1x0. Since T px0 = T (T px0), so T px0 is
the fixed point of T . Therefore suppose that Tnx0 �= Tn+1x0 for all n � 0.
Step 1. limn→∞ d(xn+1, xn) = 0.

Since T satisfies (4), we have

d(xn+1, xn) = d
(
Tn+1x0, T

nx0

)

� 1

3
·
{
d

(
Tnx0, T

n+1x0

)
+ d

(
Tn−1x0, T

nx0

)
+ d

(
Tnx0, T

n−1x0

)}

=
1

3
· {d(xn+1, xn) + 2d(xn, xn−1)} ,

so

d(xn+1, xn) � d(xn, xn−1).

The sequence {d(xn+1, xn)} is monotone decreasing and bounded below, so
limn→∞ d(xn+1, xn) = γ � 0. Assume γ �= 0. Then by (4),

d(xn+2, xn+1) � f(d(xn+1, xn)) · {d(xn+1, xn+2) + d(xn, xn+1) + d(xn+1, xn)} ,
d(xn+2, xn+1)

d(xn+1, xn+2) + 2d(xn, xn+1)
� f(d(xn+1, xn)), n = 1, 2, . . . .

Letting n → ∞, we see that 1
3 � limn→∞ f(d(xn+1, xn)), and since f ∈ U

this in turn implies γ = 0. This contradiction establishes step 1.
Step 2. {xn} is a Cauchy sequence.

Suppose m > n. By condition (4) and step 1, we get for m > n,

d(xn+1, xm+1) � f(d(xn, xm)) · {d(xn, xn+1) + d(xm, xm+1) + d(xn, xm)}
� 1

3
· {d(xn, xn+1) + d(xm, xm+1) + d(xn, xn+1)

+ d(xn+1, xm+1) + d(xm+1, xm)} ,

and

d(xn+1, xm+1) � {d(xn+1, xn) + d(xm+1, xm)} → 0

as n → ∞, so {xn} is a Cauchy sequence.
Since X is complete and since {Tnx0} is a Cauchy sequence, limn→∞

Tnx0 = v ∈ X. Then

d(v, Tv) � d(v, Tn+1x0) + d(Tn+1x0, T v)
� d

(
v, Tn+1x0

)
+ f (d(Tnx0, v))

·{d
(
Tnx0, T

n+1x0

)
+ d(v, Tv) + d (Tnx0, v)

}
,

and

[1 − f(d(Tnx0, v))] · d(Tv, v) � d(v, Tn+1x0) + f(d(Tnx0, v))
·{d

(
Tnx0, T

n+1x0

)
+ d (Tnx0, v)

}
,
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and

d(Tv, v) � 1
1 − f(d(Tnx0, v))

· d(v, Tn+1x0)

+
f (d(Tnx0, v))

1 − f (d(Tnx0, v))
· {

d
(
Tnx0, T

n+1x0

)
+ d (Tnx0, v)

} → 0

as n → ∞. Hence, Tv = v. Suppose u is another fixed point of T . Then

d(u, v) = d(Tu, Tv) � 1
3

· {d(u, Tu) + d(v, Tv) + d(u, v)},

and
2
3
d(u, v) � 1

3
· {d(u, Tu) + d(v, Tv)} = 0,

so d(u, v) = 0. Hence, T has a unique fixed point v ∈ X, so for each x ∈ X
the sequence of iterates {Tnx} converges to v. �

This theorem “lies between” Banach’s theorem and Kannan’s theorem.
This is illustrated by the following example.

Example 5.3. Let X = [0, 1] be endowed with the Euclidean metric. Consider
Tx = x

3 for 0 � x < 1 and T1 = 1
6 . T does not satisfy Banach’s theorem and

T does not satisfy Kannan’s condition. But T satisfies for all x, y ∈ X the
following condition

d(Tx, Ty) � f(d(x, y)) · {d(x, Tx) + d(y, Ty) + d(x, y)},

where f(t) = − t
12 + 1

3 for 0 < t � 1, f(0) = 1
4 , and v = 0 is the unique fixed

point of T .
Other generalizations Kannan’s fixed point theorem are discussed in

[1,12–14].

6. Asymptotic regularity and control function

Let V denote the class of functions which satisfy the condition

V = {f : (0,∞) → [0, 1) : f(tn) → 1 ⇒ tn → 0 as n → ∞} .

We do not assume that f is continuous in any sense.

Remark 6.1. The class of Rakotch functions [11],

{α : (0,∞) → [0, 1) : α(t) is a decreasing function of t}
is in the class V.
Theorem 6.2. Let (X, d) be a complete metric space and let T : X → X be an
asymptotically regular and continuous mapping. Suppose there exists f ∈ V
such that for each x, y ∈ X with x �= y,

d(Tx, Ty) � f(d(x, y)) · {d(x, Tx) + d(y, Ty) + d(x, y)}. (5)

Then, T has a unique fixed point v ∈ X and for any x ∈ X the sequence of
iterates {Tnx} converges to v.
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Proof. Let x ∈ X and define a sequence {xn = Tnx}, n = 0, 1, 2, . . . . Assume
that there exists n0 such that Tn0x = Tn0+1x, then Tn0x is a fixed point of
T . Suppose Tnx �= Tn+1x for all n � 0.
Step 1. {xn} is a Cauchy sequence.

Assume lim supm,n→∞ d(xn, xm) > 0. By triangle inequality and (5),

d(xn, xm) � d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)
� d(xn, xn+1) + f(d(xn, xm))

· {d(xn, xn+1) + d(xm, xm+1) + d(xn, xm)} + d(xm+1, xm),

so
d(xn, xm)

d(xn, xn+1) + d(xm, xm+1)
� 1 + f(d(xn, xm))

1 − f(d(xn, xm))
.

Under the assumption lim supm,n→∞ d(xn, xm) > 0, the asymptotic reg-
ularity now implies

lim sup
n,m→∞

1 + f(d(xn, xm))
1 − f(d(xn, xm))

= +∞,

from which

lim sup
n,m→∞

f(d(xn, xm)) = 1.

But since f ∈ V this implies lim supm,n→∞ d(xn, xm) = 0 which is a
contradiction.
Step 2. Existence and uniqueness of fixed points.

Since X is complete and since {xn = Tnx} is a Cauchy sequence,
limn→∞ Tnx = v ∈ X. Since T is continuous, Tv = v.

If Tv = v, Tu = u and d(u, v) > 0, then by (5), we have

d(u, v) = d(Tu, Tv) � f((u, v)) · {d(u, Tu) + d(v, Tv) + d(u, v)}
� f(d(u, v)) · d(u, v),

so

1 � f(d(u, v)),

which is a contradiction. Hence, T has a unique fixed point and for each
x ∈ X the sequence of iterates {Tnx} converges to v. �

Corollary 6.3. Let (X, d) be a complete metric space and let T : X → X be an
asymptotically regular and continuous mapping. Suppose there exists f ∈ V
such that for each x, y ∈ X,

d(Tx, Ty) � f(d(x, y)) · {d(x, Tx) + d(y, Ty))}.

Then T has a unique fixed point v ∈ X and for any x ∈ X the sequence of
iterates {Tnx} converges to v.
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Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

References
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