Skip to main content
Log in

State-of-the-art applications of machine learning in the life cycle of solid waste management

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Due to the superiority of machine learning (ML) data processing, it is widely used in research of solid waste (SW). This study analyzed the research and developmental progress of the applications of ML in the life cycle of SW. Statistical analyses were undertaken on the literature published between 1985 and 2021 in the Science Citation Index Expanded and Social Sciences Citation Index to provide an overview of the progress. Based on the articles considered, a rapid upward trend from 1985 to 2021 was found and international cooperatives were found to have strengthened. The three topics of ML, namely, SW categories, ML algorithms, and specific applications, as applied to the life cycle of SW were discussed. ML has been applied during the entire SW process, thereby affecting its life cycle. ML was used to predict the generation and characteristics of SW, optimize its collection and transportation, and model the processing of its energy utilization. Finally, the current challenges of applying ML to SW and future perspectives were discussed. The goal is to achieve high economic and environmental benefits and carbon reduction during the life cycle of SW. ML plays an important role in the modernization and intellectualization of SW management. It is hoped that this work would be helpful to provide a constructive overview towards the state-of-the-art development of SW disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SW:

Solid waste

ML:

Machine learning

WoS:

Web of Science

TP:

The total number of publications

TC:

The total number of times literature cited in the WoS

SP:

The number of single countries publications

CP:

The number of international collaborative publications

FP:

The number of first country publications

ANN:

Artificial neural network

SVM:

Support vector machine

RF:

Random forest

GA:

Genetic algorithm

References

  • Abu Qdais H, Shatnawi N (2019). Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. International Journal of Remote Sensing, 40(24): 9556–9571

    Article  Google Scholar 

  • Abunama T, Othman F, Younes M K (2018). Predicting sanitary landfill leachate generation in humid regions using ANFIS modeling. Environmental Monitoring and Assessment, 190(10): 597–611

    Article  Google Scholar 

  • Adeleke O, Akinlabi S A, Jen T C, Dunmade I (2021). Application of artificial neural networks for predicting the physical composition of municipal solid waste: an assessment of the impact of seasonal variation. Waste Management & Research, 39(8): 1058–1068

    Article  CAS  Google Scholar 

  • Anderson S R, Kadirkamanathan V, Chipperfield A, Sharifi V, Swithenbank J (2005). Multi-objective optimization of operational variables in a waste incineration plant. Computers & Chemical Engineering, 29(5): 1121–1130

    Article  CAS  Google Scholar 

  • Azadi S, Amiri H, Rakhshandehroo G R (2016). Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills. Waste Management (New York, N.Y.), 55: 220–230

    Article  CAS  Google Scholar 

  • Azadi S, Karimi-Jashni A, Javadpour S, Mahmoudian-Boroujerd L (2021). Photocatalytic landfill leachate treatment using P-type TiO2 nanoparticles under visible light irradiation. Environment, Development and Sustainability, 23(4): 6047–6065

    Article  Google Scholar 

  • Beliën J, De Boeck L, Van Ackere J (2014). Municipal solid waste collection and management problems: a literature review. Transportation Science, 48(1): 78–102

    Article  Google Scholar 

  • Bhatt Y, Ghuman K, Dhir A (2020). Sustainable manufacturing. Bibliometrics and content analysis. Journal of Cleaner Production, 260: 120988

    Article  Google Scholar 

  • Cao H, Xin Y, Yuan Q (2016). Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource Technology, 202: 158–164

    Article  CAS  Google Scholar 

  • Chandra S, Chauhan L K S, Murthy R C, Gupta S K (2006). In vivo genotoxic effects of industrial waste leachates in mice following oral exposure. Environmental and Molecular Mutagenesis, 47(5): 325–333

    Article  CAS  Google Scholar 

  • Chang N B, Chen W C (2000a). Prediction of PCDDs/PCDFs emissions from municipal incinerators by genetic programming and neural network modeling. Waste Management & Research, 18(4): 341–351

    Article  CAS  Google Scholar 

  • Chang N B, Chen W C (2000b). Fuzzy controller design for municipal incinerators with the aid of genetic algorithms and genetic programming techniques. Waste Management & Research, 18(5): 429–443

    Article  Google Scholar 

  • Chen J C, Chen W H (2008). Diagnostic analysis of a small-scale incinerator by the Garson index. Information Sciences, 178(23): 4560–4570

    Article  Google Scholar 

  • Chen K, Peng Y, Lu S, Lin B, Li X (2021a). Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators. Chemosphere, 274: 129802

    Article  CAS  Google Scholar 

  • Chen R, Zhang D, Xu X, Yuan Y (2021b). Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis. Fuel, 295: 120632

    Article  CAS  Google Scholar 

  • Chen W C, Chang N B, Chen J C (2002). GA-based fuzzy neural controller design for municipal incinerators. Fuzzy Sets and Systems, 129(3): 343–369

    Article  Google Scholar 

  • Chi Y, Wen J M, Zhang D P, Yan J H, Ni M J, Cen K F (2005). HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds. Journal of Environmental Sciences (China), 17(4): 699–704

    Google Scholar 

  • Coskuner G, Jassim M S, Zontul M, Karateke S (2021). Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes. Waste Management & Research, 39(3): 499–507

    Article  Google Scholar 

  • Dahunsi S O, Oranusi S, Efeovbokhan V E (2017). Pretreatment optimization, process control, mass and energy balances and economics of anaerobic co-digestion of Arachis hypogaea (Peanut) hull and poultry manure. Bioresource Technology, 241: 454–464

    Article  CAS  Google Scholar 

  • Dai C, Li Y P, Huang G H (2011). A two-stage support-vector-regression optimization model for municipal solid waste management: a case study of Beijing, China. Journal of Environmental Management, 92(12): 3023–3037

    Article  CAS  Google Scholar 

  • de Sousa F D B (2021). Management of plastic waste: a bibliometric mapping and analysis. Waste Management & Research, 39(5): 664–678

    Article  Google Scholar 

  • Ding X, Yang Z (2020). Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electronic Commerce Research, 4: 1–23

    Google Scholar 

  • Dong C, Jin B, Zhong Z, Lan J (2002). Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed. Energy Conversion and Management, 43(16): 2189–2199

    Article  CAS  Google Scholar 

  • Elsamadony M, Tawfik A, Suzuki M (2015). Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Applied Energy, 149: 272–282

    Article  CAS  Google Scholar 

  • Erkinay Ozdemir M, Ali Z, Subeshan B, Asmatulu E (2021). Applying machine learning approach in recycling. Journal of Material Cycles and Waste Management, 23(3): 855–871

    Article  Google Scholar 

  • Falamaki A, Shahin S (2019). Determination of shear strength parameters of municipal solid waste from its physical properties. Civil Engineering (Shiraz), 43(S1): 193–201

    Google Scholar 

  • Farzaneh G, Khorasani N, Ghodousi J, Panahi M (2021). Application of MCAT to provide multi-objective optimization model for municipal waste management system. Journal of Environmental Health Science & Engineering, 19(2): 1781–1794

    Article  Google Scholar 

  • Flores-Asis R, Méndez-Contreras J M, Juárez-Martínez U, Alvarado-Lassman A, Villanueva-Vásquez D, Aguilar-Lasserre A A (2018). Use of artificial neuronal networks for prediction of the control parameters in the process of anaerobic digestion with thermal pretreatment. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 53(10): 883–890

    Article  CAS  Google Scholar 

  • Giantomassi A, Ippoliti G, Longhi S, Bertini I, Pizzuti S (2011). Online steam production prediction for a municipal solid waste incinerator by fully tuned minimal RBF neural networks. Journal of Process Control, 21(1): 164–172

    Article  CAS  Google Scholar 

  • Guo H N, Wu S B, Tian Y J, Zhang J, Liu H T (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresource Technology, 319: 124114

    Article  CAS  Google Scholar 

  • Hannan M A, Zaila W A, Arebey M, Begum R A, Basri H (2014). Feature extraction using Hough transform for solid waste bin level detection and classification. Environmental Monitoring and Assessment, 186(9): 5381–5391

    Article  CAS  Google Scholar 

  • Heshmati R A A, Mokhtari M, Shakiba Rad S (2014). Prediction of the compression ratio for municipal solid waste using decision tree. Waste Management & Research, 32(1): 64–69

    Article  Google Scholar 

  • Holubar P, Zani L, Hager M, Fröschl W, Radak Z, Braun R (2002). Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Research, 36(10): 2582–2588

    Article  CAS  Google Scholar 

  • Hoque M M, Rahman M T U (2020). Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options. Journal of Cleaner Production, 256: 120387

    Article  Google Scholar 

  • Huang G H, Baetz B W, Patry G G (1998). Trash-flow allocation: planning under uncertainty. Interfaces, 28(6): 36–55

    Article  Google Scholar 

  • Idwan S, Mahmood I, Zubairi J A, Matar I (2020). Optimal management of solid waste in smart cities using internet of things. Wireless Personal Communications, 110(1): 485–501

    Article  Google Scholar 

  • Jiang P, Liu X (2016). Hidden Markov model for municipal waste generation forecasting under uncertainties. European Journal of Operational Research, 250(2): 639–651

    Article  Google Scholar 

  • Junjuri R, Gundawar M K (2020). A low-cost LIBS detection system combined with chemometrics for rapid identification of plastic waste. Waste Management (New York, N.Y.), 117: 48–57

    Article  CAS  Google Scholar 

  • Kabugo J C, Jamsa-Jounela S L, Schiemann R, Binder C (2020). Industry 4.0 based process data analytics platform: a waste-to-energy plant case study. International Journal of Electrical Power & Energy Systems, 115: 105508

    Article  Google Scholar 

  • Karaca F, Özkaya B (2006). NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environmental Modelling & Software, 21(8): 1190–1197

    Article  Google Scholar 

  • Kardani N, Zhou A, Nazem M, Lin X (2021). Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel, 289: 119903

    Article  CAS  Google Scholar 

  • Keramatfar A, Amirkhani H (2019). Bibliometrics of sentiment analysis literature. Journal of Information Science, 45(1): 3–15

    Article  Google Scholar 

  • Kormi T, Mhadhebi S, Bel Hadj Ali N, Abichou T, Green R (2018). Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization. Waste Management (New York, N.Y.), 72: 313–328

    Article  CAS  Google Scholar 

  • Korucu M K, Kaplan Ö, Büyük O, Güllü M K (2016). An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines. Waste Management (New York, N.Y.), 56: 46–52

    Article  Google Scholar 

  • Korucu M K, Karademir A (2014). Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision. Journal of the Air & Waste Management Association, 64(2): 131–140

    Article  Google Scholar 

  • Lai K C, Lim S K, Teh P C, Yeap K H (2017). An artificial neural network approach to predicting electrostatic separation performance for food waste recovery. Polish Journal of Environmental Studies, 26(4): 1921–1926

    Article  CAS  Google Scholar 

  • Li H, Ke L, Chen Z, Feng G, Xia D, Wang Y, Zheng Y, Li Q (2016). Estimating the fates of C and N in various anaerobic codigestions of manure and lignocellulosic biomass based on artificial neural networks. Energy & Fuels, 30(11): 9490–9501

    Article  CAS  Google Scholar 

  • Li H, Xu Q, Xiao K, Yang J, Liang S, Hu J, Hou H, Liu B (2020a). Predicting the higher heating value of syngas pyrolyzed from sewage sludge using an artificial neural network. Environmental Science and Pollution Research International, 27(1): 785–797

    Article  CAS  Google Scholar 

  • Li J, Li L, Suvarna M, Pan L, Tabatabaei M, Ok Y S, Wang X (2022a). Wet wastes to bioenergy and biochar: a critical review with future perspectives. Science of the Total Environment, 817: 152921

    Article  CAS  Google Scholar 

  • Li J, Pan L, Suvarna M, Tong Y W, Wang X (2020b). Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning. Applied Energy, 269: 115166

    Article  CAS  Google Scholar 

  • Li J, Pan L, Suvarna M, Wang X (2021a). Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 426: 131285

    Article  CAS  Google Scholar 

  • Li J, Suvarna M, Pan L, Zhao Y, Wang X (2021b). A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification. Applied Energy, 304: 117674

    Article  CAS  Google Scholar 

  • Li J, Zhang L, Li C, Tian H, Ning J, Zhang J, Tong Y W, Wang X (2022b). Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production. ACS ES&T Engineering, 2(4): 642–652

    Article  CAS  Google Scholar 

  • Li J, Zhang W, Liu T, Yang L, Li H, Peng H, Jiang S, Wang X, Leng L (2021c). Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chemical Engineering Journal, 425: 130649

    Article  CAS  Google Scholar 

  • Li J, Zhu X, Li Y, Tong Y W, Ok Y S, Wang X (2021d). Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource. Journal of Cleaner Production, 278: 123928

    Article  CAS  Google Scholar 

  • Lima L, Trindade E, Alencar L, Alencar M, Silva L (2021). Sustainability in the construction industry: a systematic review of the literature. Journal of Cleaner Production, 289: 125730

    Article  Google Scholar 

  • Lin X, Wang F, Chi Y, Huang Q, Yan J (2015). A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition. Waste Management (New York, N.Y.), 36: 24–32

    Article  Google Scholar 

  • Liu C, Dong H, Cao Y, Geng Y, Li H, Zhang C, Xiao S (2021). Environmental damage cost assessment from municipal solid waste treatment based on LIME3 model. Waste Management (New York, N.Y.), 125: 249–256

    Article  Google Scholar 

  • Magazzino C, Mele M, Schneider N (2020). The relationship between municipal solid waste and greenhouse gas emissions: evidence from Switzerland. Waste Management (New York, N.Y.), 113: 508–520

    Article  CAS  Google Scholar 

  • Mehrdad S M, Abbasi M, Yeganeh B, Kamalan H (2021). Prediction of methane emission from landfills using machine learning models. Environmental Progress & Sustainable Energy, 40(4): 13629

    Article  Google Scholar 

  • Mokhtari M, Heshmati R A A, Shariatmadari N (2015). Compression ratio of municipal solid waste simulation using artificial neural network and adaptive neurofuzzy system. Earth Sciences Research Journal, 18(2): 165–171

    Article  Google Scholar 

  • Nabavi-Pelesaraei A, Bayat R, Hosseinzadeh-Bandbafha H, Afrasyabi H, Chau K W (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management: a case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148: 427–440

    Article  CAS  Google Scholar 

  • Nayak S K, Satapathy A (2020). Wear analysis of waste marble dust-filled polymer composites with an integrated approach based on design of experiments and neural computation. Journal of Engineering Tribology, 234(12): 1846–1856

    CAS  Google Scholar 

  • Nguyen, KLP, Chuang Y H, Chen H W, Chang C C (2020). Impacts of socioeconomic changes on municipal solid waste characteristics in Taiwan, China. Resources, Conservation and Recycling, 161: 104931

    Article  Google Scholar 

  • Noori R, Abdoli M A, Ghasrodashti A A, Jalili Ghazizade M (2009). Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad. Environmental Progress & Sustainable Energy, 28(2): 249–258

    Article  CAS  Google Scholar 

  • Obileke K, Onyeaka H, Omoregbe O, Makaka G, Nwokolo N, Mukumba P (2020). Bioenergy from bio-waste: a bibliometric analysis of the trend in scientific research from 1998–2018. Biomass Conversion and Biorefinery, 28(2): 1–16

    Google Scholar 

  • Ozcan H, Ucan O, Sahin U, Borat M, Bayat C (2006). Artificial neural network modeling of methane emissions at Istanbul Kemerburgaz-Odayeri landfill site. Journal of Scientific and Industrial Research, 65(2): 128–134

    CAS  Google Scholar 

  • Pan R, Duque J V F, Debenest G (2021). Investigating waste plastic pyrolysis kinetic parameters by genetic algorithm coupled with thermogravimetric analysis. Waste and Biomass Valorization, 12(5): 2623–2637

    Article  CAS  Google Scholar 

  • Pan R, Duque J V F, Debenest G (2022). Waste plastic thermal pyrolysis analysis by a neural fuzzy model coupled with a genetic algorithm. Waste and Biomass Valorization, 13(1): 135–148

    Article  CAS  Google Scholar 

  • Pandey D S, Das S, Pan I, Leahy J J, Kwapinski W (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Management (New York, N.Y.), 58: 202–213

    Article  CAS  Google Scholar 

  • Park H I, Park B (2009). Prediction of MSW long-term settlement induced by mechanical and decomposition-based compressions. International Journal of Environmental Research, 3(3): 335–348

    CAS  Google Scholar 

  • Qu Y, Qian X, Song H, Xing Y, Li Z, Tan J (2018). Soil moisture investigation utilizing machine learning approach based experimental data and Landsat5-TM images: a case study in the Mega City Beijing. Water, 10(4): 423

    Article  Google Scholar 

  • Rabl A, Spadaro J V, Mcgavran P D (1998). Health risks of air pollution from incinerators: a perspective. Waste Management & Research, 16(4): 365–388

    Article  Google Scholar 

  • Sabrin S, Nazari R, Karimi M, Fahad M G R, Everett J, Peters R (2021). Development of a conceptual framework for risk assessment of elevated internal temperatures in landfills. Science of the Total Environment, 782: 146831

    Article  CAS  Google Scholar 

  • Saghouri M, Abdi R, Ebrahimi-Nik M, Rohani A, Maysami M (2020) Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates. Energy Sources Part A. Recovery Utilization and Environmental Effects, 102: 1–17

    Article  Google Scholar 

  • Shi M, Wang X, Shao M, Lu L, Ullah H, Zheng H, Li F (2023). Resource utilization of typical biomass wastes as biochars in removing plasticizer diethyl phthalate from water: characterization and adsorption mechanisms. Frontiers of Environmental Science & Engineering, 17(1): 5

    Article  CAS  Google Scholar 

  • Simsek C, Kincal C, Gunduz O (2006). A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environmental Geology, 49(4): 620ȓ633

    Article  Google Scholar 

  • Singh D, Chavan D, Pandey A K, Periyaswami L, Kumar S (2021). Determination of landfill gas generation potential from lignocellulose biomass contents of municipal solid waste. Science of the Total Environment, 785: 147243

    Article  CAS  Google Scholar 

  • Sun Y, Tao J, Chen G, Yan B, Cheng Z (2020). Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: influence of multiple factors. Waste Management (New York, N.Y.), 107: 276–284

    Article  CAS  Google Scholar 

  • Tao J, Liang R, Li J, Yan B, Chen G, Cheng Z, Li W, Lin F, Hou L (2020). Fast characterization of biomass and waste by infrared spectra and machine learning models. Journal of Hazardous Materials, 387: 121723

    Article  CAS  Google Scholar 

  • Turkdogan-Aydinol F I, Yetilmezsoy K (2010). A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. Journal of Hazardous Materials, 182(1–3): 460–471

    Article  CAS  Google Scholar 

  • Vaz C A D, Samanamud G L, Da Silva R S, Franca A B, Quintao C M F, Urzedo A P, Silva M B, Bosch Neto J C B, Amaral M S, Loures C C A, et al. (2021). Modeling and optimization of hybrid leachate treatment processes and scale-up of the process: review. Journal of Cleaner Production, 312: 127732

    Article  Google Scholar 

  • Viotti P, Polettini A, Pomi R, Innocenti, C (2003). Genetic algorithms as a promising tool for optimisation of the MSW collection routes. Waste Management & Research, 21(4): 292–298

    Article  Google Scholar 

  • Vu H L, Bolingbroke D, Ng K T W, Fallah B (2019). Assessment of waste characteristics and their impact on GIS vehicle collection route optimization using ANN waste forecasts. Waste Management (New York, N.Y.), 88: 118–130

    Article  Google Scholar 

  • Vu H L, Ng K T W, Fallah B, Richter A, Kabir G (2020). Interactions of residential waste composition and collection truck compartment design on GIS route optimization. Waste Management (New York, N.Y.), 102: 613–623

    Article  Google Scholar 

  • Wan Y, Xiao L, Wu C (2009). An Optimum Intelligent Algorithm and its Application in Population Statistic and Forecast, 2009 WRI Global Congress on Intelligent Systems, pp. 40–44

  • Wang Y, Lai N, Zuo J, Chen G, Du H (2016). Characteristics and trends of research on waste-to-energy incineration: a bibliometric analysis, 1999–2015. Renewable & Sustainable Energy Reviews, 66: 95–104

    Article  CAS  Google Scholar 

  • Wang Z, Peng X, Xia A, Shah A A, Huang Y, Zhu X, Zhu X, Liao Q (2022). The role of machine learning to boost the bioenergy and biofuels conversion. Bioresource Technology, 343: 126099

    Article  CAS  Google Scholar 

  • Wen J, Yan J, Zhang D, Chi Y, Ni M, Cen K (2006). SO2 emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds. Journal of Thermal Science, 15(3): 281–288

    Article  CAS  Google Scholar 

  • Yan B, Liang R, Li B, Tao J, Chen G, Cheng Z, Zhu Z, Li X (2021). Fast identification and characterization of residual wastes via laser-induced breakdown spectroscopy and machine learning. Resources, Conservation and Recycling, 174: 105851

    Article  CAS  Google Scholar 

  • Yan L, Li Y, Yang B, Farahani M R, Gao W (2018). Air-steam gasification of municipal solid wastes (MSWs) for hydrogen production. Energy Sources, Part A: recovery, Utilization, and Environmental Effects, 40(5): 538–543

    Article  CAS  Google Scholar 

  • Ye G, Luo H, Ren Z, Ahmad M S, Liu C G, Tawab A, Al-Ghafari A B, Omar U, Gull M, Mehmood M A (2018). Evaluating the bioenergy potential of Chinese Liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Conversion and Management, 163: 13–21

    Article  CAS  Google Scholar 

  • You H, Ma Z, Tang Y, Wang Y, Yan J, Ni M, Cen K, Huang Q (2017). Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Management (New York, N.Y.), 68: 186–197

    Article  Google Scholar 

  • Zhang H, Yu S, Shao L, He P (2019). Estimating source strengths of HCl and SO2 emissions in the flue gas from waste incineration. Journal of Environmental Sciences (China), 75: 370–377

    Article  CAS  Google Scholar 

  • Zhang W, Li J, Liu T, Leng S, Yang L, Peng H, Jiang S, Zhou W, Leng L, Li H (2021). Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresource Technology, 342: 126011

    Article  CAS  Google Scholar 

  • Zheng H, Gu Y (2021). EnCNN-UPMWS: waste classification by a CNN ensemble using the UPM weighting strategy. Electronics (Basel), 10(4): 427

    Google Scholar 

  • Zhong S, Zhang K, Bagheri M, Burken J G, Gu A, Li B, Ma X, Marrone B L, Ren Z J, Schrier J, et al. (2021). Machine learning: new ideas and tools in environmental science and engineering. Environmental Science & Technology, 55(19): 12741–12754

    CAS  Google Scholar 

  • Zhang Y, Li J, Liu H, Zhao G, Tian Y, Xie K (2021). Environmental, social, and economic assessment of energy utilization of crop residue in China. Frontiers in Energy, 15(2): 308–319

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 52100157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyu Tao.

Additional information

Highlights

• State-of-the-art applications of machine learning (ML) in solid waste (SW) is presented.

• Changes of research field over time, space, and hot topics were analyzed.

• Detailed application seniors of ML on the life cycle of SW were summarized.

• Perspectives towards future development of ML in the field of SW were discussed.

Special Issue—Artificial Intelligence/Machine Learning on Environmental Science & Engineering (Responsible Editors: Yongsheng Chen, Xiaonan Wang, Joe F. Bozeman III & Shouliang Yi)

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Chen, C., Kumar, A. et al. State-of-the-art applications of machine learning in the life cycle of solid waste management. Front. Environ. Sci. Eng. 17, 44 (2023). https://doi.org/10.1007/s11783-023-1644-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1644-x

Keywords

Navigation