Skip to main content

Advertisement

Log in

Applying machine learning approach in recycling

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Waste generation has been increasing drastically based on the world’s population and economic growth. This has significantly affected human health, natural life, and ecology. The utilization of limited natural resources, and the harming of the earth in the process of mineral extraction, and waste management have far exceeded limits. The recycling rate are continuously increasing; however, assessments show that humans will be creating more waste than ever before. Some difficulties during recycling include the significant expense involved during the separation of recyclable waste from non-disposable waste. Machine learning is the utilization of artificial intelligence (AI) that provides a framework to take as a structural improvement of the fact without being programmed. Machine learning concentrates on the advancement of programs that can obtain the information and use it to learn to make future decisions. The classification and separation of materials in a mixed recycling application in machine learning is a division of AI that is playing an important role for better separation of complex waste. The primary purpose of this study is to analyze AI by focusing on machine learning algorithms used in recycling systems. This study is a compilation of the most recent developments in machine learning used in recycling industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

adapted from Dhulekar et al. [61]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

adapted from Torres et al. [87]

Fig. 10

adapted from Deng et al. [97]

Fig. 11

Similar content being viewed by others

References

  1. Chu Y, Huang C, Xie X et al (2018) Multilayer hybrid deep-learning method for waste classification and recycling. Comput Intell Neurosci. https://doi.org/10.1155/2018/5060857

    Article  Google Scholar 

  2. Kapur R (2016) Natural resources and environmental issues. J Ecosyst Ecogr 6:2–5. https://doi.org/10.4172/2157-7625.1000196

    Article  Google Scholar 

  3. Management Association IR (2013) Sustainable practices: concepts, methodologies, tools, and applications: concepts, methodologies, tools, and applications. IGI Global, Philadelphia

    Google Scholar 

  4. Recycling facts—greening forward. http://greeningforward.org/environmental-issues/waste/recycle/recycling-facts/. Accessed 2 Mar 2020

  5. Saidani M, Kendall A, Yannou B et al (2019) Management of the end-of-life of light and heavy vehicles in the US: comparison with the European union in a circular economy perspective. J Mater Cycles Waste Manag 21:1449–1461. https://doi.org/10.1007/s10163-019-00897-3

    Article  Google Scholar 

  6. Ijaola AO, Farayibi PK, Asmatulu E (2020) Superhydrophobic coatings for steel pipeline protection in oil and gas industries: a comprehensive review. J Nat Gas Sci Eng 83:103544. https://doi.org/10.1016/j.jngse.2020.103544

    Article  Google Scholar 

  7. Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16:1060. https://doi.org/10.3390/ijerph16061060

    Article  Google Scholar 

  8. Mandadi G.K, Balakrishnan S, Asmatulu E, (2017) Hands-on Training of Engineering Students on Recycling of Electronic Waste Materials. 2017 ASEE Midwest Section Conference (Oklahoma State University-Stillwater, OK)

  9. Kumar S, Smith SR, Fowler G et al (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4:160764. https://doi.org/10.1098/rsos.160764

    Article  Google Scholar 

  10. Arebey M, Hannan MA, Basri H, Abdullah H (2009) Solid waste monitoring and management using RFID, GIS and GSM. In: SCOReD2009—proceedings of 2009 IEEE Student conference on research and development, pp 37–40. https://doi.org/10.1109/SCORED.2009.5443382

  11. Asmatulu R, Asmatulu E (2011) Importance of recycling education: a curriculum development at WSU. J Mater Cycles Waste Manag 13:131–138. https://doi.org/10.1007/s10163-011-0002-4

    Article  Google Scholar 

  12. Roh SB, Park SB, Oh SK et al (2018) Development of intelligent sorting system realized with the aid of laser-induced breakdown spectroscopy and hybrid preprocessing algorithm-based radial basis function neural networks for recycling black plastic wastes. J Mater Cycles Waste Manag 20:1934–1949. https://doi.org/10.1007/s10163-018-0701-1

    Article  Google Scholar 

  13. Asmatulu E, Subeshan B, Twomey J, Overcash M (2020) Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-020-01794-w

    Article  Google Scholar 

  14. Ferronato N, Ragazzi M, Gorritty Portillo MA et al (2019) How to improve recycling rate in developing big cities: an integrated approach for assessing municipal solid waste collection and treatment scenarios. Environ Dev 29:94–110. https://doi.org/10.1016/j.envdev.2019.01.002

    Article  Google Scholar 

  15. Amershi S, Cakmak M, Knox WB, Kulesza T (2014) Power to the people: the role of humans in interactive machine learning. AI Mag 35:105–120. https://doi.org/10.1609/aimag.v35i4.2513

    Article  Google Scholar 

  16. Berral JL, Gavaldà R, Torres J (2011) Adaptive scheduling on power-aware managed data-centers using machine learning. In: Proceedings—2011 12th IEEE/ACM international conference on grid computing 2011, pp 66–73. https://doi.org/10.1109/Grid.2011.18

  17. Dai F, Nie G, Chen Y (2020) The municipal solid waste generation distribution prediction system based on FIG–GA-SVR model. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01022-5

    Article  Google Scholar 

  18. Alexander T, Subeshan B, Asmatulu R (2020) Modifying the figure of merit of thermoelectric materials with inclusions of porous structures. Energy Ecol Environ 5:313–329. https://doi.org/10.1007/s40974-020-00183-1

    Article  Google Scholar 

  19. Chhay L, Reyad MAH, Suy R et al (2018) Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. J Mater Cycles Waste Manag 20:1761–1770. https://doi.org/10.1007/s10163-018-0743-4

    Article  Google Scholar 

  20. Behera SK, Meher SK, Park HS (2015) Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol Environ Policy 17:443–453. https://doi.org/10.1007/s10098-014-0798-4

    Article  Google Scholar 

  21. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater. https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  22. Meza JKS, Yepes DO, Rodrigo-Ilarri J, Cassiraga E (2019) Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon 5:e02810. https://doi.org/10.1016/j.heliyon.2019.e02810

    Article  Google Scholar 

  23. Roh SB, Oh SK, Park EK, Choi WZ (2017) Identification of black plastics realized with the aid of Raman spectroscopy and fuzzy radial basis function neural networks classifier. J Mater Cycles Waste Manag 19:1093–1105. https://doi.org/10.1007/s10163-017-0620-6

    Article  Google Scholar 

  24. Al-Garadi MA, Mohamed A, Al-Ali A et al (2020) A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Commun Surv Tutor. https://doi.org/10.1109/COMST.2020.2988293

    Article  Google Scholar 

  25. (2019) Essential steps in waste management. https://noharm-global.org/issues/global/essential-steps-waste-management. Accessed 2 Mar 2020

  26. Ching C (2019) How to build an image classifier for waste sorting. https://towardsdatascience.com/how-to-build-an-image-classifier-for-waste-sorting-6d11d3c9c478. Accessed 2 Mar 2020

  27. Phu STP, Fujiwara T, Hoang MG et al (2019) Waste separation at source and recycling potential of the hotel industry in Hoi An city, Vietnam. J Mater Cycles Waste Manag 21:23–34. https://doi.org/10.1007/s10163-018-0807-5

    Article  Google Scholar 

  28. de Vega CA, Benítez SO, Barreto MER (2008) Solid waste characterization and recycling potential for a university campus. Waste Manag 28:S21–S26

    Article  Google Scholar 

  29. Anastassakis GN (2018) Solid waste separation and processing. Handb Environ Eng. https://doi.org/10.1002/9781119304418.ch21

    Article  Google Scholar 

  30. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater 5:1–36. https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  31. Van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109:373–440

    Article  MathSciNet  Google Scholar 

  32. Bock FE, Aydin RC, Cyron CJ et al (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 6:110. https://doi.org/10.3389/fmats.2019.00110

    Article  Google Scholar 

  33. Holzinger A, Plass M, Holzinger K et al (2016) Towards interactive machine learning (iML): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach 1 introduction and motivation for research. Lncs 9817:81–95. https://doi.org/10.1007/978-3-319-45507-5

    Article  Google Scholar 

  34. Kourou K, Exarchos TP, Exarchos KP et al (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005

    Article  Google Scholar 

  35. Marblestone AH, Wayne G, Kording KP (2016) Toward an integration of deep learning and neuroscience. Front Comput Neurosci 10:1–41. https://doi.org/10.3389/fncom.2016.00094

    Article  Google Scholar 

  36. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477. https://doi.org/10.1038/s41573-019-0024-5

    Article  Google Scholar 

  37. Ahmed Z, Zeeshan S, Mendhe D, Dong X (2020) Human gene and disease associations for clinical-genomics and precision medicine research. Clin Transl Med 10:297–318. https://doi.org/10.1002/ctm2.28

    Article  Google Scholar 

  38. Deo RC (2015) Machine learning in medicine. Circulation 132:1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593

    Article  Google Scholar 

  39. Nguyen G, Dlugolinsky S, Bobák M et al (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https://doi.org/10.1007/s10462-018-09679-z

    Article  Google Scholar 

  40. Hosny A, Parmar C, Quackenbush J et al (2018) Artificial intelligence in radiology. Nat Rev Cancer 18:500–510. https://doi.org/10.1038/s41568-018-0016-5

    Article  Google Scholar 

  41. Abiodun OI, Jantan A, Omolara AE et al (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4:e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  42. Bianco MJ, Gerstoft P, Traer J et al (2019) Machine learning in acoustics: theory and applications. J Acoust Soc Am 146:3590–3628. https://doi.org/10.1121/1.5133944

    Article  Google Scholar 

  43. Majumder A, Behera L, Member S, Subramanian VK (2016) FER using deep network-based data fusion. IEEE Trans Cybern 48:103–114

    Article  Google Scholar 

  44. Rashidi HH, Tran NK, Betts EV et al (2019) Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad Pathol. https://doi.org/10.1177/2374289519873088

    Article  Google Scholar 

  45. Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2:1–21. https://doi.org/10.1186/s40537-014-0007-7

    Article  Google Scholar 

  46. Chung Y, Haas PJ, Upfal E, Kraska T, (2018) Unknown examples & machine learning model generalization. arXiv preprint arXiv:1808.08294

  47. Alom MZ, Taha TM, Yakopcic C et al (2019) A state-of-the-art survey on deep learning theory and architectures. Electron 8:1–67. https://doi.org/10.3390/electronics8030292

    Article  Google Scholar 

  48. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  49. Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105:2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  50. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29:102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  51. Zhang Q, Zhang M, Chen T et al (2019) Recent advances in convolutional neural network acceleration. Neurocomputing 323:37–51. https://doi.org/10.1016/j.neucom.2018.09.038

    Article  Google Scholar 

  52. Xiang Y, Choi W, Lin Y, Savarese S (2017) Subcategory-Aware convolutional neural networks for object proposals and detection. In: Proceedings—2017 IEEE winter conference on applications of computer vision, WACV 2017, pp 924–933. https://doi.org/10.1109/WACV.2017.108

  53. Mukherjee K, Natesan S (2009) Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing (Vienna/New York) 84:209–230. https://doi.org/10.1007/s00607-009-0030-2

    Article  MathSciNet  MATH  Google Scholar 

  54. Cintra RJ, Duffner S, Garcia C, Leite A (2018) Low-complexity approximate convolutional neural networks. IEEE Trans Neural Netw Learn Syst 29:5981–5992. https://doi.org/10.1109/TNNLS.2018.2815435

    Article  Google Scholar 

  55. Zeng M, Yu T, Wang X et al (2017) Semi-supervised convolutional neural networks for human activity recognition. In: Proceedings—2017 IEEE international conference on big data, Big Data 2017, 2018-Jan, pp 522–529. https://doi.org/10.1109/BigData.2017.8257967

  56. Kim J, Nocentini O, Scafuro M et al (2019) An innovative automated robotic system based on deep learning approach for recycling objects, pp 613–622. https://doi.org/10.5220/0007839906130622

  57. Gruber F, Grählert W, Wollmann P, Kaskel S (2019) Classification of black plastics waste using fluorescence imaging and machine learning. Recycling 4:1–17. https://doi.org/10.3390/recycling4040040

    Article  Google Scholar 

  58. Sreelakshmi K, Akarsh S, Vinayakumar R, Soman KP (2019) Capsule neural networks and visualization for segregation of plastic and non-plastic wastes. In: 2019 5th international conference on advanced computing and communication systems (ICACCS) 2019, pp 631–636. https://doi.org/10.1109/ICACCS.2019.8728405

  59. Costa BS, Bernardes ACS, Pereira JVA et al (2019) Artificial intelligence in automated sorting in trash recycling, pp 198–205. https://doi.org/10.5753/eniac.2018.4416

  60. Dhulekar P, Gandhe ST, Mahajan UP (2018) Development of bottle recycling machine using machine learning algorithm. In: 2018 International conference on advances in communication and computing technology (ICACCT) 2018, pp 515–519. https://doi.org/10.1109/ICACCT.2018.8529483

  61. Nalepa J, Kawulok M (2019) Selecting training sets for support vector machines: a review. Artif Intell Rev 52:857–900. https://doi.org/10.1007/s10462-017-9611-1

    Article  Google Scholar 

  62. Huang S, Nianguang CAI, Penzuti Pacheco P et al (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom 15:41–51. https://doi.org/10.21873/cgp.20063

    Article  Google Scholar 

  63. Ghezelbash R, Maghsoudi A, Carranza EJM (2019) Performance evaluation of RBF- and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of S-A multifractal model and mineralization controls. Earth Sci Inform 12:277–293. https://doi.org/10.1007/s12145-018-00377-6

    Article  Google Scholar 

  64. Mahvash Mohammadi N, Hezarkhani A (2018) Application of support vector machine for the separation of mineralised zones in the Takht-e-Gonbad porphyry deposit, SE Iran. J Afr Earth Sci 143:301–308. https://doi.org/10.1016/j.jafrearsci.2018.02.005

    Article  Google Scholar 

  65. Khan A, Rinner B, Cavallaro A (2018) Cooperative robots to observe moving targets: review. IEEE Trans Cybern 48:187–198. https://doi.org/10.1109/TCYB.2016.2628161

    Article  Google Scholar 

  66. Lundberg L, Lennerstad H, Boeva V, García-Martín E (2019) Handling non-linear relations in support vector machines through hyperplane folding. In: ACM 11th international conference on machine learning and computing series part F1481, pp 137–141. https://doi.org/10.1145/3318299.3318319

  67. Kowsari K, Meimandi KJ, Heidarysafa M et al (2019) Text classification algorithms: a survey. Information 10:1–68. https://doi.org/10.3390/info10040150

    Article  Google Scholar 

  68. Gibbons C, Richards S, Valderas JM, Campbell J (2017) Supervised machine learning algorithms can classify open-text feedback of doctor performance with human-level accuracy. J Med Internet Res 19:1–12. https://doi.org/10.2196/jmir.6533

    Article  Google Scholar 

  69. Auer M, Osswald K, Volz R, Woidasky J (2019) Artificial intelligence-based process for metal scrap sorting. arXiv preprint arXiv:1903.09415

  70. Ramalingam B, Lakshmanan AK, Ilyas M et al (2018) Cascaded machine-learning technique for debris classification in floor-cleaning robot application. Appl Sci 8:1–19. https://doi.org/10.3390/app8122649

    Article  Google Scholar 

  71. Sakr GE, Mokbel M, Darwich A et al (2016) Comparing deep learning and support vector machines for autonomous waste sorting. In: 2016 International multidisciplinary conference on engineering technology (IMCET), pp 207–212. https://doi.org/10.1109/IMCET.2016.7777453

  72. Wang Z, Peng B, Huang Y, Sun G (2019) Classification for plastic bottles recycling based on image recognition. Waste Manag 88:170–181. https://doi.org/10.1016/j.wasman.2019.03.032

    Article  Google Scholar 

  73. Magana-Mora A, Bajic VB (2017) OmniGA: optimized omnivariate decision trees for generalizable classification models. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-04281-9

    Article  Google Scholar 

  74. Liu S, Yang Z, Li Y, Wang S (2020) Decision tree-based sensitive information identification and encrypted transmission system. Entropy. https://doi.org/10.3390/e22020192

    Article  MathSciNet  Google Scholar 

  75. Xin Y, Kong L, Liu Z et al (2018) Machine learning and deep learning methods for cybersecurity. IEEE Access 6:35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950

    Article  Google Scholar 

  76. Hehn TM, Hamprecht FA (2019) End-to-end learning of deterministic decision trees. In: Lecture notes on computer science (including Subser lect notes artif intell lect notes bioinformatics) 11269 LNCS, pp 612–627. https://doi.org/10.1007/978-3-030-12939-2_42

  77. Hehn TM, Kooij JFP, Hamprecht FA (2020) End-to-end learning of decision trees and forests. Int J Comput Vis 128:997–1011. https://doi.org/10.1007/s11263-019-01237-6

    Article  MathSciNet  Google Scholar 

  78. Yan-yan SONG, Ying LU (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 27:130–135

    Google Scholar 

  79. Akata Z, Perronnin F, Harchaoui Z, Schmid C (2016) Label-embedding for image classification. IEEE Trans Pattern Anal Mach Intell 38:1425–1438. https://doi.org/10.1109/TPAMI.2015.2487986

    Article  Google Scholar 

  80. Zhang Z, Jung C (2020) GBDT-MO: Gradient-Boosted Decision Trees for Multiple Outputs. IEEE Transactions on Neural Networks and Learning Systems.

  81. Prasath VBS, Alfeilat HAA, Hassanat ABA et al (2017) Distance and similarity measures effect on the performance of k-nearest neighbor classifier—a review, pp 1–39. https://doi.org/10.1089/big.2018.0175

  82. Jiang Z, Huynh DQ (2018) Multiple pedestrian tracking from monocular videos in an interacting multiple model framework. IEEE Trans Image Process 27:1361–1375. https://doi.org/10.1109/TIP.2017.2779856

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang S, Li X, Zong M et al (2018) Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans Neural Networks Learn Syst 29:1774–1785. https://doi.org/10.1109/TNNLS.2017.2673241

    Article  MathSciNet  Google Scholar 

  84. Hu LY, Huang MW, Ke SW, Tsai CF (2016) The distance function effect on k-nearest neighbor classification for medical datasets. Springerplus. https://doi.org/10.1186/s40064-016-2941-7

    Article  Google Scholar 

  85. Nweke HF, Teh YW, Mujtaba G et al (2019) Multi-sensor fusion based on multiple classifier systems for human activity identification. Hum Centric Comput Inf Sci. https://doi.org/10.1186/s13673-019-0194-5

    Article  Google Scholar 

  86. Dada EG, Bassi JS, Chiroma H et al (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01802

    Article  Google Scholar 

  87. Torres-García A, Rodea-Aragón O, Longoria-Gandara O et al (2015) Intelligent waste separator. Comput y Sist 19:487–500. https://doi.org/10.13053/CyS-19-3-2254

    Article  Google Scholar 

  88. Zhang Q, Yu H, Barbiero M et al (2019) Artificial neural networks enabled by nanophotonics. Light Sci Appl. https://doi.org/10.1038/s41377-019-0151-0

    Article  Google Scholar 

  89. Adamović VM, Antanasijević DZ, Ristić M et al (2018) An optimized artificial neural network model for the prediction of rate of hazardous chemical and healthcare waste generation at the national level. J Mater Cycles Waste Manag 20:1736–1750. https://doi.org/10.1007/s10163-018-0741-6

    Article  Google Scholar 

  90. Pfeiffer M, Pfeil T (2018) Deep learning with spiking neurons: opportunities and challenges. Front Neurosci. https://doi.org/10.3389/fnins.2018.00774

    Article  Google Scholar 

  91. Zantalis F, Koulouras G, Karabetsos S, Kandris D (2019) A review of machine learning and IoT in smart transportation. Futur Internet 11:1–23. https://doi.org/10.3390/FI11040094

    Article  Google Scholar 

  92. Gopal S (2016) Artificial neural networks in geospatial analysis. Int Encycl Geogr People Earth Environ Technol. https://doi.org/10.1002/9781118786352.wbieg0322

    Article  Google Scholar 

  93. Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2019) 1D convolutional neural networks and applications: A survey. Mech Syst Sig Process 151:107398

    Article  Google Scholar 

  94. Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning with class imbalance. J Big Data. https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  95. Kalantary S, Jahani A, Pourbabaki R, Beigzadeh Z (2019) Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies. RSC Adv 9:24858–24874. https://doi.org/10.1039/c9ra04927d

    Article  Google Scholar 

  96. Boutaba R, Salahuddin MA, Limam N et al (2018) Comprehensive survey machine learning. J Internet Serv Appl 9:99. https://doi.org/10.1186/s13174-018-0087-2

    Article  Google Scholar 

  97. Deng F, He Y, Zhou S et al (2018) Compressive strength prediction of recycled concrete based on deep learning. Constr Build Mater 175:562–569. https://doi.org/10.1016/j.conbuildmat.2018.04.169

    Article  Google Scholar 

  98. Sousa J, Rebelo A, Cardoso JS (2019) Automation of waste sorting with deep learning. In: Proceedings of 15th workshop on computer vision, WVC 2019, pp 43–48. https://doi.org/10.1109/WVC.2019.8876924

  99. Mwangi HW, Mokoena M (2019) Using deep learning to detect polyethylene terephthalate (PET) bottle status for recycling. Glob J Comput Sci Technol 19:27–31. https://doi.org/10.34257/gjcstgvol19is4pg27

    Article  Google Scholar 

  100. Seredkin AV, Tokarev MP, Plohih IA et al (2019) Development of a method of detection and classification of waste objects on a conveyor for a robotic sorting system. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1359/1/012127

    Article  Google Scholar 

  101. Adedeji O, Wang Z (2019) Intelligent waste classification system using deep learning convolutional neural network. Proc Manuf 35:607–612. https://doi.org/10.1016/j.promfg.2019.05.086

    Article  Google Scholar 

  102. Hulyalkar S, Deshpande R, Makode K (2018) Implementation of smartbin using convolutional neural networks. Int Res J Eng Technol 5:3352–3358

    Google Scholar 

  103. Akinina N V., Akinin M V., Taganov AI, Nikiforov MB (2017) Methods of detection in satellite images of illegal dumps by using a method based on tree classifier. In: 2017 6th Mediterranean conference on embedded computing (MECO)—Incl ECYPS 2017, pp 6–8. https://doi.org/10.1109/MECO.2017.7977179

  104. Yang M, Thung G (2016) Classification of trash for recyclability status. In: CS229 project report 2016, pp 1–6

  105. Paulraj SG, Hait S, Thakur A (2016) Automated municipal solid waste sorting for recycling using a mobile manipulator. Proc ASME Des Eng Tech Conf. https://doi.org/10.1115/DETC2016-59842

    Article  Google Scholar 

  106. Darling-Hammond L, Flook L, Cook-Harvey C et al (2020) Implications for educational practice of the science of learning and development. Appl Dev Sci 24:97–140. https://doi.org/10.1080/10888691.2018.1537791

    Article  Google Scholar 

  107. Huntingford C, Jeffers ES, Bonsall MB et al (2019) Machine learning and artificial intelligence to aid climate change research and preparedness. Environ Res Lett 14:124007. https://doi.org/10.1088/1748-9326/ab4e55

    Article  Google Scholar 

  108. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  Google Scholar 

  109. Vabalas A, Gowen E, Poliakoff E, Casson AJ (2019) Machine learning algorithm validation with a limited sample size. PLoS ONE 14:e0224365. https://doi.org/10.1371/journal.pone.0224365

    Article  Google Scholar 

  110. Matheny ME, Whicher D, Israni ST (2020) Artificial intelligence in health care. JAMA 323:509. https://doi.org/10.1001/jama.2019.21579

    Article  Google Scholar 

  111. Akamangwa N (2016) Working for the environment and against safety: how compliance affects health and safety on board ships. Saf Sci 87:131–143. https://doi.org/10.1016/j.ssci.2016.03.027

    Article  Google Scholar 

  112. Wagner TP (2017) Reducing single-use plastic shopping bags in the USA. Waste Manag 70:3–12. https://doi.org/10.1016/j.wasman.2017.09.003

    Article  Google Scholar 

  113. Rudin C, Radin J (2019) Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Sci Rev 1:1–9. https://doi.org/10.1162/99608f92.5a8a3a3d

    Article  Google Scholar 

  114. Xu C, Jackson SA (2019) Machine learning and complex biological data. Genome Biol 20:1–4. https://doi.org/10.1186/s13059-019-1689-0

    Article  Google Scholar 

  115. Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthc J 6:94–98. https://doi.org/10.7861/futurehosp.6-2-94

    Article  Google Scholar 

  116. Vollmer S, Mateen BA, Bohner G et al (2020) Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. https://doi.org/10.1136/bmj.l6927

    Article  Google Scholar 

  117. Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1:206–215. https://doi.org/10.1038/s42256-019-0048-x

    Article  Google Scholar 

  118. Sakr S, Elshawi R, Ahmed AM et al (2017) Comparison of machine learning techniques to predict all-cause mortality using fitness data: The Henry Ford exercIse testing (FIT) project. BMC Med Inform Decis Mak 17:1–15. https://doi.org/10.1186/s12911-017-0566-6

    Article  Google Scholar 

  119. Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing neural networks through neuroevolution. Nat Mach Intell 1:24–35. https://doi.org/10.1038/s42256-018-0006-z

    Article  Google Scholar 

  120. Liu Y, Zhao T, Ju W et al (2017) Materials discovery and design using machine learning. J Mater 3:159–177. https://doi.org/10.1016/j.jmat.2017.08.002

    Article  Google Scholar 

  121. Elton DC, Boukouvalas Z, Butrico MS et al (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-27344-x

    Article  Google Scholar 

  122. Walker S, Khan W, Katic K et al (2020) Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. Energy Build 209:109705. https://doi.org/10.1016/j.enbuild.2019.109705

    Article  Google Scholar 

  123. Wang Z, O’Boyle M (2018) Machine learning in compiler optimization. Proc IEEE 106:1879–1901. https://doi.org/10.1109/JPROC.2018.2817118

    Article  Google Scholar 

  124. Kilimci ZH, Akyuz AO, Uysal M et al (2019) An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity. https://doi.org/10.1155/2019/9067367

    Article  Google Scholar 

  125. Zhang S, Zhang S, Wang B, Habetler TG (2020) Deep learning algorithms for bearing fault diagnosticsx—a comprehensive review. IEEE Access 8:29857–29881. https://doi.org/10.1109/ACCESS.2020.2972859

    Article  Google Scholar 

  126. Sitawarin C, Wagner D (2019) On the robustness of deep K-nearest neighbors. In: Proceedings—2019 IEEE symposium on security and privacy workshops (SPW) 2019, pp 1–7. https://doi.org/10.1109/SPW.2019.00014

  127. Gandhi R (2018) R-CNN, fast R-CNN, faster R-CNN, YOLO—object detection algorithms. In: Towar. Data sci. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e. Accessed 24 April 2020

  128. Nowakowski P, Pamuła T (2020) Application of deep learning object classifier to improve e-waste collection planning. Waste Manag 109:1–9. https://doi.org/10.1016/j.wasman.2020.04.041

    Article  Google Scholar 

  129. Melinte DO, Travediu AM, Dumitriu DN (2020) Deep Convolutional Neural Networks Object Detector for Real-Time Waste Identification. Appl Sci 10(20):7301. https://doi.org/10.1007/s10163-021-01182-y

    Article  Google Scholar 

  130. Liu L, Ouyang W, Wang X et al (2020) Deep learning for generic object detection: a survey. Int J Comput Vis 128:261–318. https://doi.org/10.1007/s11263-019-01247-4

    Article  Google Scholar 

  131. Kadaous W (2016) What are the advantages and disadvantages of deep learning? Can you compare it with the statistical learning theory?—Quora. In: Quora. https://www.quora.com/What-are-the-advantages-and-disadvantages-of-deep-learning-Can-you-compare-it-with-the-statistical-learning-theory. Accessed 24 April 2020

  132. K D (2019) Top 4 advantages and disadvantages of support vector machine or SVM. In: Medium. https://medium.com/@dhiraj8899/top-4-advantages-and-disadvantages-of-support-vector-machine-or-svm-a3c06a2b107. Accessed 24 April 2020

  133. Guo H, Wu S, Tian Y et al (2021) Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: a review. Bioresour Technol 319:124114. https://doi.org/10.1016/j.biortech.2020.124114

    Article  Google Scholar 

  134. Jahnavi M (2017) Introduction to neural networks, advantages and applications. In: Mediu. Corp. https://towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications-96851bd1a207. Accessed 24 April 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkinay Ozdemir, M., Ali, Z., Subeshan, B. et al. Applying machine learning approach in recycling. J Mater Cycles Waste Manag 23, 855–871 (2021). https://doi.org/10.1007/s10163-021-01182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01182-y

Keywords

Navigation