Skip to main content
Log in

Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bateer B, Tian C, Qu Y, Du S, Yang Y, Ren Z, Pan K, Fu H (2014). Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities. Dalton Transactions (Cambridge, England), 43(26): 9885–9891

    Article  CAS  Google Scholar 

  • Cannas C, Ardu A, Musinu A, Peddis D, Piccaluga G (2008). Spherical nanoporous assemblies of iso-oriented cobalt ferrite nanoparticles: synthesis, microstructure, and magnetic properties. Chemistry of Materials, 20(20): 6364–6371

    Article  CAS  Google Scholar 

  • Chen Q, Zheng J, Yang Q, Dang Z, Zhang L (2019). Insights into the glyphosate adsorption behavior and mechanism by a MnFe2O4@-Cellulose-activated carbon magnetic hybrid. ACS Applied Materials & Interfaces, 11(17): 15478–15488

    Article  CAS  Google Scholar 

  • Chen R, Christiansen M G, Anikeeva P (2013). Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano, 7(10): 8990–9000

    Article  CAS  Google Scholar 

  • Chowdhury A, Khan A A, Kumari S, Hussain S (2019). Superadsorbent Ni-Co-S/SDS nanocomposites for ultrahigh removal of cationic, anionic organic dyes and toxic metal ions: kinetics, isotherm and adsorption mechanism. ACS Sustainable Chemistry & Engineering, 7(4): 4165–4176

    Article  CAS  Google Scholar 

  • Comes R, Liu H, Khokhlov M, Kasica R, Lu J, Wolf S A (2012). Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites. Nano Letters, 12(5): 2367–2373

    Article  CAS  Google Scholar 

  • Gopi C V M, Vinodh R, Sambasivam S, Obaidat I M, Singh S, Kim H J (2020). Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chemical Engineering Journal, 381: 122640

    Article  CAS  Google Scholar 

  • Guo P, Zhang G, Yu J, Li H, Zhao X (2012). Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 395: 168–174

    Article  CAS  Google Scholar 

  • He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019). Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chemical Reviews, 119(7): 4471–4568

    Article  CAS  Google Scholar 

  • Kamal T, Khan S B, Asiri A M (2016). Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: Evaluation of azo dyes catalytic reduction. Cellulose (London, England), 23(3): 1911–1923

    CAS  Google Scholar 

  • Kampouri S, Stylianou K C (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9(5): 4247–4270

    Article  CAS  Google Scholar 

  • Kim J, Cho H R, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T (2017). Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society, 139 (32): 10992–10995

    Article  CAS  Google Scholar 

  • Kong X, Sun Z Y, Chen M, Chen Q, Chen Q (2013). Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 6(11): 3260–3266

    Article  CAS  Google Scholar 

  • Lam E, Hrapovic S, Majid E, Chong J H, Luong J H (2012). Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale, 4(3): 997–1002

    Article  CAS  Google Scholar 

  • Li B, Cao H, Yin J, Wu Y A, Warner J H (2012). Synthesis and separation of dyes via Ni@ reduced graphene oxide nanostructures. Journal of Materials Chemistry, 22(5): 1876–1883

    Article  CAS  Google Scholar 

  • Li S, Li H, Liu J, Zhang H, Yang Y, Yang Z, Wang L, Wang B (2015). Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets. Dalton Transactions (Cambridge, England), 44(19): 9193–9199

    Article  CAS  Google Scholar 

  • Li Y, Yang C X, Qian H L, Zhao X, Yan X P (2019). Carboxylfunctionalized covalent organic frameworks for the adsorption and removal of triphenylmethane dyes. ACS Applied Nano Materials, 2 (11): 7290–7298

    Article  CAS  Google Scholar 

  • Liu B, Li Q, Zhang B, Cui Y, Chen H, Chen G, Tang D (2011). Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale, 3(5): 2220–2226

    Article  CAS  Google Scholar 

  • Liu J, Cao H, Xiong J, Cheng Z (2012). Ferromagnetic hematite@-graphene nanocomposites for removal of rhodamine B dye molecules from water. CrystEngComm, 14(16): 5140–5144

    Article  CAS  Google Scholar 

  • Manzetti S, van der Spoel E R, van der Spoel D (2014). Chemical properties, environmental fate, and degradation of seven classes of pollutants. Chemical Research in Toxicology, 27(5): 713–737

    Article  CAS  Google Scholar 

  • Marin M L, Santos-Juanes L, Arques A, Amat A M, Miranda M A (2012). Organic photocatalysts for the oxidation of pollutants and model compounds. Chemical Reviews, 112(3): 1710–1750

    Article  CAS  Google Scholar 

  • Narayanan K B, Park H H (2015). Homogeneous catalytic activity of gold nanoparticles synthesized using turnip (Brassica rapa L.) leaf extract in the reductive degradation of cationic azo dye. Korean Journal of Chemical Engineering, 32(7): 1273–1277

    Article  CAS  Google Scholar 

  • Pal M, Rakshit R, Mandal K (2014). Surface modification of MnFe2O4 nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties. ACS Applied Materials & Interfaces, 6(7): 4903–4910

    Article  CAS  Google Scholar 

  • Pan D, Mou F, Li X, Deng Z, Sun J, Xu L, Guan J (2016). Multifunctional magnetic oleic acid-coated MnFe2O4/polystyrene Janus particles for water treatment. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 4(30): 11768–11774

    Article  CAS  Google Scholar 

  • Peng S, Meng W, Guo J, Wang B, Wang Z, Xu N, Li X, Wang J, Xu J (2019). Photocatalytically stable superhydrophobic and translucent coatings generated from PDMS-Grafted-SiO2/TiO2@ PDMS with multiple applications. Langmuir, 35(7): 2760–2771

    Article  CAS  Google Scholar 

  • Peng X, Gao F, Zhao J, Li J, Qu J, Fan H (2018). Self-assembly of a graphene oxide/MnFe2O4 motor by coupling shear force with capillarity for removal of toxic heavy metals. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(42): 20861–20868

    Article  CAS  Google Scholar 

  • Peng Y, Wang Z, Liu W, Zhang H, Zuo W, Tang H, Chen F, Wang B (2015). Size-and shape-dependent peroxidase-like catalytic activity of MnFe2O4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Transactions (Cambridge, England), 44(28): 12871–12877

    Article  CAS  Google Scholar 

  • Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1(3): 228–233

    Article  CAS  Google Scholar 

  • Saleh S M (2019). ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 211: 141–147

    Article  CAS  Google Scholar 

  • Su L, Lei S, Liu L, Liu L, Zhang Y, Shi S, Yan X (2018). Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance super-capacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(21): 9997–10007

    Article  CAS  Google Scholar 

  • Thakur K, Kandasubramanian B (2019). Graphene and graphene oxide-based composites for removal of organic pollutants: A review. Journal of Chemical & Engineering Data, 64(3): 833–867

    Article  CAS  Google Scholar 

  • Vestal C R, Zhang Z J (2003). Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of the American Chemical Society, 125(32): 9828–9833

    Article  CAS  Google Scholar 

  • Wang L, Hu G, Wang Z, Wang B, Song Y, Tang H (2015a). Highly efficient and selective degradation of methylene blue from mixed aqueous solution by using monodisperse CuFe2O4 nanoparticles. RSC Advances, 5(90): 73327–73332

    Article  CAS  Google Scholar 

  • Wang N, Ma X, Wang Y, Yang J, Qian Y (2015b). Porous MnFe2O4 microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(18): 9550–9555

    Article  CAS  Google Scholar 

  • Wang Q, Zhang B, Lu X, Zhang X, Zhu H, Li B (2018). Multifunctional 3D K2Ti6O13 nanobelt-built architectures towards wastewater remediation: selective adsorption, photodegradation, mechanism insight and photoelectrochemical investigation. Catalysis Science & Technology, 8(23): 6180–6195

    Article  CAS  Google Scholar 

  • Wang Z, Liu J, Li T, Liu J, Wang B (2014). Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T2-weighted MRI contrast agents. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2 (29): 4748–4753

    Article  CAS  Google Scholar 

  • Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S (2011). Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomaterialia, 7(9): 3496–3504

    Article  CAS  Google Scholar 

  • Xu Z F, Sun C F, Duan W Y, Zhang E J, Dai W, Zheng X J, Liu F Y, Tan X X (2013). Clinical anatomical study and evaluation of the use of the free anteromedial thigh perforator flaps in reconstructions of the head and neck. British Journal of Oral & Maxillofacial Surgery, 51 (8): 725–730

    Article  Google Scholar 

  • Zeng G, Shi N, Hess M, Chen X, Cheng W, Fan T, Niederberger M (2015). A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano, 9(4): 4227–4235

    Article  CAS  Google Scholar 

  • Zhang Q, Dong R, Wu Y, Gao W, He Z, Ren B (2017). Light-driven Au-WO3@C Janus micromotors for rapid photodegradation of dye pollutants. ACS Applied Materials & Interfaces, 9(5): 4674–4683

    Article  CAS  Google Scholar 

  • Zhang X J, Wang G S, Cao W Q, Wei Y Z, Liang J F, Guo L, Cao M S (2014). Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Applied Materials & Interfaces, 6(10): 7471–7478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21501080), the Special Funding for Open and Shared Large-Scale Instruments and Equipments of Lanzhou University (LZU-GXJJ-2020-005) and the Fundamental Research Funds for the Central Universities (lzujbky-2019-kb06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowen Hu or Tianrong Li.

Additional information

Highlights

• Size and shape-dependent MnFe2O4 NPs were prepared via a facile method.

• Ligand-exchange chemistry was used to prepare the hydrophilic MnFe2O4 NPs.

• The catalytic properties of MnFe2O4 NPs toward dye degradation were fully studied.

• The catalytic activities of MnFe2O4 NPs followed Michaelis — Menten behavior.

• All the MnFe2O4 NPs exhibit selective degradation to different dyes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Zhang, Z., Zhang, X. et al. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants. Front. Environ. Sci. Eng. 15, 108 (2021). https://doi.org/10.1007/s11783-021-1396-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1396-4

Keywords

Navigation