Skip to main content
Log in

Homogeneous catalytic activity of gold nanoparticles synthesized using turnip (Brassica rapa L.) leaf extract in the reductive degradation of cationic azo dye

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new greener strategy for the synthesis and stabilization of gold nanoparticles using aqueous turnip leaf extract under ambient conditions is reported in this study. The formation of gold nanoparticles was monitored using a UV-Vis spectrophotometer and the maximum absorption peak (λ max) at 535 nm with a visual color change to pinkish-red confirmed the gold nanoparticles. Further characterization was conducted using Fourier-transform Infra-red spectrometry (FT-IR), powder X-ray diffractometry (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) with zeta potential at pH 7.5. The stability of the nanoparticles was due to the capping of nanoparticles with amine groups and ortho-substituted aromatic phytoconstituents, which exhibit higher negative values of zeta potential (ζ). XRD pattern revealed the formation of face-centered cubic (fcc) lattice crystals of gold nanoparticles, while TEM have demonstrated the size of gold nanoparticles ranging from 3 to 58 nm. The as-synthesized gold nanoparticles showed rapid catalytic reduction of methylene blue (MB) dye to leuco MB in the presence of sodium borohydride (NaBH4). The reduction reaction followed pseudo-first order kinetics with a reaction rate constant of 0.372 min−1. This process of nanoparticle synthesis is simple, nontoxic and environmentally benign compared to the chemical synthetic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Ma, S. H. Overbury and S. Dai, Gold nanoparticles as chemical catalysts, Encyclopedia of Inorganic Chemistry (2009).

  2. K. B. Narayanan and N. Sakthivel, Adv. Colloid Interface Sci., 169, 59 (2011).

    Article  CAS  Google Scholar 

  3. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad and M. Sastry, Nat. Mater., 3, 482 (2004).

    Article  CAS  Google Scholar 

  4. S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interface Sci., 275, 496 (2004).

    Article  CAS  Google Scholar 

  5. B. Ankamwar, C. Damle, A. Ahmad and M. Sastry, J. Nanosci. Nanotechnol., 5, 1665 (2005).

    Article  CAS  Google Scholar 

  6. B. Ankamwar, M. Chaudhary and M. Sastry, Synth. React. Inorg. Met-Org. Nanometal Chem., 35, 19 (2005).

    Article  CAS  Google Scholar 

  7. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006).

    Article  CAS  Google Scholar 

  8. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology, 18, 105104 (2007).

    Article  Google Scholar 

  9. R. Vilchis-Nestor, V. Sanchez-Mendieta, M. A. Camacho-Lopez, R. M. Gomez-Espinosa, M. A. Camacho-Lopez and J. A. Arenas- Alatorre, Mater. Lett., 62, 3103 (2008).

    Article  CAS  Google Scholar 

  10. J. Kasthuri, S. Veerapandian and N. Rajendiran, Colloids Surf., B Biointerfaces, 68, 55 (2009).

    Article  CAS  Google Scholar 

  11. J. Kasthuri, K. Kathiravan and N. Rajendiran, J. Nanopart. Res., 11, 1075 (2009).

    Article  CAS  Google Scholar 

  12. D. Raghunandan, S. Basavaraja, B. Mahesh, S. Balaji, S. Y. Manjunath and A. Venkataraman, Nanobiotechnology, 5, 34 (2009).

    Article  CAS  Google Scholar 

  13. J. Y. Song, H. K. Jang and B. S. Kim, Process Biochem., 44, 1133 (2009).

    Article  CAS  Google Scholar 

  14. G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma and R. P. Singh, J. Nanopart. Res., 13, 2981 (2011).

    Article  CAS  Google Scholar 

  15. J. S. Valli and B. Vaseeharan, Mater. Lett., 82, 171 (2012).

    Article  CAS  Google Scholar 

  16. N. Sahu, D. Soni, B. Chandrashekhar, B. K. Sarangi, D. Satpute and R. A. Pandey, Bioproc. Biosyst. Eng., 36, 999 (2013).

    Article  CAS  Google Scholar 

  17. M. E. Cartea, M. Francisco, P. Soengas and P. Velasco, Molecules, 16, 251 (2011).

    Article  CAS  Google Scholar 

  18. P. K. Gillman, J. Psychopharmacol., 25, 429 (2011).

    Article  CAS  Google Scholar 

  19. B. Epe, J. Hegler and D. Wild, Carcinogenesis, 10, 2019 (1989).

    Article  CAS  Google Scholar 

  20. Y. Galagan and W. F. Su, J. Photochem. Photobiol., 195, 378 (2008).

    Article  CAS  Google Scholar 

  21. T. J. I. Edison and M. G. Sethuraman, Process Biochem., 47, 1351 (2012).

    Article  CAS  Google Scholar 

  22. P. Klug and L. E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd Ed., Wiley, New York (1974).

    Google Scholar 

  23. B. Hvolbaek, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen and J. K. Norshov, Nano Today, 2, 14 (2007).

    Article  Google Scholar 

  24. M. Valodkar, R. N. Jadeja, M. C. Thounaojam, R. V. Devkar and S. Thakore, Mater. Chem. Phys., 128, 83 (2011).

    Article  CAS  Google Scholar 

  25. H. M. Zakaria, A. Shah, M. Konieczny, J. A. Hoffmann, A. J. Nijdam and M. E. Reeves, Langmuir, 29, 7661 (2013).

    Article  CAS  Google Scholar 

  26. P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, S. Shirude, R. Pasricha, A. Mandale and M. Sastry, Langmuir, 20, 7825 (2004).

    Article  CAS  Google Scholar 

  27. N. I. Surovtseva, A. M. Eremenko, N. P. Smirnova, V. A. Pokrovskii, T. V. Fesenko and G. N. Starukh, Theor. Exp. Chem., 43, 235 (2007).

    Article  CAS  Google Scholar 

  28. N. Cheval, N. Gindy, C. Flowkes and A. Fahmi, Nanoscale Res. Lett., 7, 182 (2012).

    Article  Google Scholar 

  29. M. Haruta, J. Catal., 115, 301 (1989).

    Article  CAS  Google Scholar 

  30. I. Laoufi, R. Lazzari, J. Jupille, O. Robach, S. Garaud, G. Cabailh, P. Dolle, H. Cruguel and A. Bailly, J. Phys. Chem. C, 115, 4673 (2011).

    Article  CAS  Google Scholar 

  31. K. B. Narayanan and N. Sakthivel, Bioresour. Technol., 102, 10737 (2011).

    Article  CAS  Google Scholar 

  32. N. M. Mahmoodi, J. Environ. Eng., 139, 1382 (2013).

    Article  CAS  Google Scholar 

  33. Y. Saatci, J. Environ. Eng., 136, 1000 (2010).

    Article  CAS  Google Scholar 

  34. K. B. Narayanan and N. Sakthivel, J. Hazard. Mater., 189, 519 (2011).

    Article  CAS  Google Scholar 

  35. S. K. Srivastava, R. Yamada, C. Ogino and A. Kondo, Nanoscale Res. Lett., 8, 70 (2013).

    Article  Google Scholar 

  36. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. K. Ghosh and T. Pal, J. Phys. Chem. C, 111, 4596 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, K.B., Park, H.H. Homogeneous catalytic activity of gold nanoparticles synthesized using turnip (Brassica rapa L.) leaf extract in the reductive degradation of cationic azo dye. Korean J. Chem. Eng. 32, 1273–1277 (2015). https://doi.org/10.1007/s11814-014-0321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0321-y

Keywords

Navigation