Skip to main content
Log in

Recent Advances on Zinc Ferrite and Its Derivatives as the Forerunner of the Nanomaterials in Catalytic Applications

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Modern catalysis research, particularly in the field of organic synthesis, gives significant importance to the recovery and recycling of catalysts. Magnetic separation is now a reliable, extremely effective, simple, and quick separation method for chemicals and catalysts, compared to traditional separation. Recently, zinc ferrite (ZnFe2O4) magnetic nanoparticles have attracted the attention of the scientific community due to their unique properties in different interdisciplinary areas. Among the different applications, the use of these materials as heterogeneous catalysts in a variety of organic transformations is one of the major research areas. Based on their potential for recuperation and recyclability, zinc ferrite nanocatalysts show a renewed interest in catalysis research, with a focus on exploring their performance in a range of organic processes. The current study highlighted the synthesis, characterization, and application of zinc ferrite nanocatalysts and their nanocomposites in the formation of heterocyclic compounds, dehydrogenation, oxidation, alkylation, C–C coupling, mitigation of pollutants (dyes, nitro molecules, and antibiotics) with the available literature in the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46

Similar content being viewed by others

References

  1. C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release 299, 1–20 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. S.R. Patade, D.D. Andhare, S.B. Somvanshi, P.B. Kharat, S.D. More, K.M. Jadhav, Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia. Nanomater. Energy 9(1), 8–13 (2020)

    Article  Google Scholar 

  3. S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, P.P. Khirade, K.M. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 835, 155422 (2020)

    Article  CAS  Google Scholar 

  4. A. Corma, H.I. Garcia, F.X. Llabrés i Xamena, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110(8), 4606–4655 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Pourshojaei, M.-H. Jadidi, K. Eskandari, A. Foroumadi, A. Asadipour, An eco-friendly synthesis of 4-aryl-substituted pyrano-fuzed coumarins as potential pharmacological active heterocycles using molybdenum oxide nanoparticles as an effective and recyclable catalyst. Res. Chem. Intermed. 44, 4195–4212 (2018)

    Article  CAS  Google Scholar 

  6. B. Karami, K. Eskandari, M. Azizi, Tungstate sulfuric acid (Tsa): a green and highly efficient catalyst for novel and known polysubstituted imidazoles synthesis. Lett. Org. Chem. 10(10), 722–732 (2013)

    Article  CAS  Google Scholar 

  7. N.M. Deraz, A. Alarifi, Microstructure and magnetic studies of zinc ferrite nano-particles. Int. J. Electrochem. Sci. 7(7), 6501–6511 (2012)

    Article  CAS  Google Scholar 

  8. M. Naseh, Cobalt salophen complex supported on magnetic nanoparticles as an efficient reusable catalyst for oxidation of benzylic alcohols. Orient. J. Chem. 29, 1523–1530 (2013)

    Article  Google Scholar 

  9. M. Afshari, M. Gorjizadeh, S. Nazari, M. Naseh, Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes. J. Magn. Magn. Mater. 363, 13–17 (2014)

    Article  CAS  Google Scholar 

  10. M. Afshari, M. Gorjizadeh, M. Naseh, Supported sulfonic acid on magnetic nanoparticles used as a reusable catalyst for rapid synthesis of Α-aminophosphonates. Inorg. Nano-Metal Chem. 47(4), 591–596 (2017)

    Article  CAS  Google Scholar 

  11. F. Mehrjoyan, M. Afshari, Nano Nife2o4 supported phenanthroline Cu (Ii) complex as a retrievable catalyst for selective and environmentally friendly oxidation of benzylic alcohols. J. Mol. Struct. 1236, 130284 (2021)

    Article  CAS  Google Scholar 

  12. A. Bendi, G.B.D. Rao, N. Sharma, R. Tomar, L. Singh, Solvent-free synthesis of glycoside annulated 1, 2, 3-triazole based dihydropyrimidinones using copper ferrite nanomaterials as heterogeneous catalyst and Dft studies. ChemistrySelect 7(7), e202103910 (2022)

    Article  CAS  Google Scholar 

  13. B. Anjaneyulu, G.B.D. Rao, S. Nagakalyan, Synthesis and Dft studies of 1, 2-disubstituted benzimidazoles using expeditious and magnetically recoverable Cofe2o4/Cu (Oh) 2 nanocomposite under solvent-free condition. J. Saudi Chem. Soc. 25(12), 101394 (2021)

    Article  CAS  Google Scholar 

  14. B. Karami, K. Eskandari, Z. Zare, S. Gholipour, A new access to 1, 8-dioxooctahydroxanthenes using yttrium (Iii) nitrate hexahydrate and tin (Ii) chloride dihydrate as effective and reusable catalysts. Chem. Heterocycl. Compd. 49, 1715–1722 (2014)

    Article  CAS  Google Scholar 

  15. G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, ZA ALOthman, GT Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud. Univ. Sci. 31(2), 257–269 (2019)

    Article  Google Scholar 

  16. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A.C. Başaran, Synthesis and magnetic characterization of Zn0.6ni0.4fe2o4 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321(3), 157–162 (2009)

    Article  CAS  Google Scholar 

  17. P. Thakur, S. Taneja, D. Chahar, B. Ravelo, A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021)

    Article  CAS  Google Scholar 

  18. A. Bardhan, C.K. Ghosh, M.K. Mitra, G.C. Das, S. Mukherjee, K.K. Chattopadhyay, Low temperature synthesis of zinc ferrite nanoparticles. Solid State Sci. 12(5), 839–844 (2010)

    Article  CAS  Google Scholar 

  19. M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 151(14–15), 1031–1035 (2011)

    Article  CAS  Google Scholar 

  20. K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: a review. Ceram. Int. 45(9), 11143–11157 (2019)

    Article  CAS  Google Scholar 

  21. J. Qiu, C. Wang, Gu. Mingyuan, Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B 112(1), 1–4 (2004)

    Article  Google Scholar 

  22. A. Kmita, A. Pribulova, M. Holtzer, P. Futas, A. Roczniak, Use of specific properties of zinc ferrite in innovative technologies. Archi. Metall. Mater. 61, 2141–2146 (2016)

    Article  CAS  Google Scholar 

  23. S. Pansambal, S. Ghotekar, S. Shewale, K. Deshmukh, N. Barde, P. Bardapurkar, Efficient synthesis of magnetically separable Cofe2o4@ Sio2 nanoparticles and its potent catalytic applications for the synthesis of 5-aryl-1, 2, 4-triazolidine-3-thione derivatives. J. Water Environ. Nanotechnol. 4(3), 174–186 (2019)

    CAS  Google Scholar 

  24. K. Maaz, S. Karim, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J. Magn. Magn. Mater. 321(12), 1838–1842 (2009)

    Article  CAS  Google Scholar 

  25. P.V. Ramana, K.S. Rao, K.H. Rao, Influence of iron content on the structural and magnetic properties of Ni-Zn ferrite nanoparticles synthesized by peg assisted sol-gel method. J. Magn. Magn. Mater. 465, 747–755 (2018)

    Article  CAS  Google Scholar 

  26. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129(1–3), 51–65 (2007)

    Article  CAS  Google Scholar 

  27. C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J. Magn. Magn. Mater. 474, 282–286 (2019)

    Article  CAS  Google Scholar 

  28. B.S. Randhawa, J. Singh, H. Kaur, M. Kaur, Preparation of nickel ferrite from thermolysis of nickel tris (malonato) ferrate (Iii) heptahydrate precursor. Ceram. Int. 36(6), 1993–1996 (2010)

    Article  CAS  Google Scholar 

  29. A.H. Navidpour, M. Fakhrzad, Photocatalytic and magnetic properties of Znfe2o4 nanoparticles synthesised by mechanical alloying. Int. J. Environ. Analyt. Chem. 102(3), 690–706 (2022)

    Article  CAS  Google Scholar 

  30. H.A. Choudhury, A. Choudhary, M. Sivakumar, V.S. Moholkar, Mechanistic investigation of the sonochemical synthesis of zinc ferrite. Ultrason. Sonochem. 20(1), 294–302 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. M.A.S. Amulya, H.P. Nagaswarupa, M.R. Anil Kumar, C.R. Ravikumar, S.C. Prashantha, K.B. Kusuma, Sonochemical synthesis of Nife2o4 nanoparticles: characterization and their photocatalytic and electrochemical applications. Appl. Surf. Sci. Adv. 1, 100023 (2020)

    Article  Google Scholar 

  32. M. Abbas, B.P. Rao, C. Kim, Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes. Mater. Chem. Phys. 147(3), 443–451 (2014)

    Article  CAS  Google Scholar 

  33. J.Z. Jiang, P. Wynn, S. Mørup, T. Okada, F.J. Berry, Magnetic structure evolution in mechanically milled nanostructured Znfe2o4 particles. Nanostruct. Mater. 12(5–8), 737–740 (1999)

    Article  Google Scholar 

  34. K.V.P.M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, Sonochemical preparation of nanosized amorphous Nife2o4 particles. J. Phys. Chem. B 101(33), 6409–6414 (1997)

    Article  CAS  Google Scholar 

  35. S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, R. Swaminathan, M.E. McHenry, V.G. Harris, Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J. Appl. Phys. 95(11), 6392–6395 (2004)

    Article  CAS  Google Scholar 

  36. S. Prasad, N.S. Gajbhiye, Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J. Alloys Compd. 265(1–2), 87–92 (1998)

    Article  CAS  Google Scholar 

  37. N.M. Deraz, A. Alarifi, Synthesis and physicochemical properties of nanomagnetic zinc ferrite system. Int. J. Electrochem. Sci. 7, 3798–3808 (2012)

    Article  CAS  Google Scholar 

  38. M. Nüchter, B. Ondruschka, W. Bonrath, A. Gum, Microwave assisted synthesis—a critical technology overview. Green Chem. 6(3), 128–141 (2004)

    Article  Google Scholar 

  39. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. 12(35), 7795 (2000)

    CAS  Google Scholar 

  40. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486(1–2), 325–329 (2009)

    Article  CAS  Google Scholar 

  41. R.B.N. Baig, R.S. Varma, Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem. 15(2), 398–417 (2013)

    Article  Google Scholar 

  42. M. Neamtu, C. Nadejde, V.-D. Hodoroaba, R.J. Schneider, L. Verestiuc, U. Panne, Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  43. L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16(6), 2906–2933 (2014)

    Article  CAS  Google Scholar 

  44. L. Jiang, Z. Zhang, Efficient transfer hydrogenation of nitro compounds over a magnetic palladium catalyst. Int. J. Hydrogen Energy 41(48), 22983–22990 (2016)

    Article  CAS  Google Scholar 

  45. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Coll. Interface. Sci. 271, 101982 (2019)

    Article  CAS  Google Scholar 

  46. T.M. Dhameliya, R.J. Patel, R.H. Amin, D.K. Sureja, K.B. Bodiwala, Comprehensive review on metal nanoparticles catalyzed synthesis of Aza-and Oxa-heterocycles reported in 2021. Mini-Rev. Org. Chem. 20(8), 800–817 (2023)

    Article  CAS  Google Scholar 

  47. P. Das, A. Dutta, A. Bhaumik, C. Mukhopadhyay, Heterogeneous Ditopic Znfe2O4 catalyzed synthesis of 4H-pyrans: further conversion to 1, 4-Dhps and report of functional group interconversion from amide to ester. Green Chem. 16(3), 1426–1435 (2014)

    Article  CAS  Google Scholar 

  48. M. Thomas, K.C. George, Infrared and magnetic study of nanophase zinc ferrite. Indian J. Pure Appl. Phys. 47, 81–86 (2009)

    CAS  Google Scholar 

  49. P.P. Bardapurkar, S.S. Shewale, S.A. Arote, S.S. Pansambal, N.P. Barde, Effect of precursor Ph on structural, magnetic and catalytic properties of Cofe2O4@ Sio2 green nanocatalyst. Res. Chem. Intermediates 47, 1919–1939 (2021)

    Article  CAS  Google Scholar 

  50. T.N. Rao, N. Krishnarao, F. Ahmed, S.Y. Alomar, F. Albalawi, P. Mani, A. Aljaafari, B. Parvatamma, N. Arshi, S. Kumar, One-pot synthesis of 7, 7-dimethyl-4-phenyl-2-thioxo-2, 3, 4, 6, 7, 8-hexahydro-1h-quinazoline-5-onesusing zinc ferrite nanocatalyst and its bio evaluation. Catalysts 11(4), 431 (2021)

    Article  CAS  Google Scholar 

  51. P. Chavan, S. Bangale, D. Pansare, R. Shelke, S. Jadhav, S. Tupare, D. Kamble, M. Rai, Synthesis of substituted pyrimidine using Znfe2o4 nanocatalyst via one pot multi-component reaction ultrasonic irradiation. J. Heterocycl. Chem. 57(9), 3326–3333 (2020)

    Article  CAS  Google Scholar 

  52. R. Nejat, Nano-ferrite Znfe2o4: as efficient and re-usable catalyst for the synthesis of 4h-chromenes and 4h-pyrano [2, 3-C] pyrazoles. Inorg. Chem. Res. 6(1), 10–16 (2022)

    Google Scholar 

  53. R. Hazarika, A. Garg, S. Chetia, P. Phukan, A. Kulshrestha, A. Kumar, A. Bordoloi, A.J. Kalita, A.K. Guha, D. Sarma, Magnetically separable Znfe2o4 nanoparticles: a low cost and sustainable catalyst for propargyl amine and Nh-triazole synthesis. Appl. Catal. A 625, 118338 (2021)

    Article  CAS  Google Scholar 

  54. S. Jadhav, M. Farooqui, P. Chavan, S. Hussain, M. Rai, Znfe2o4 nano-catalyzed one-pot multi-component synthesis of substituted tetrahydropyranoquinoline under neat ultrasonic irradiation. Polycyclic Aromat. Compd. 42(5), 2067–2075 (2022)

    Article  CAS  Google Scholar 

  55. A.A. Marzouk, A.M. Abu-Dief, A.A. Abdelhamid, Hydrothermal preparation and characterization of Znfe2o4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi-substituted imidazoles and study of their anti-inflammatory activity. Appl. Organomet. Chem. 32(1), e3794 (2018)

    Article  Google Scholar 

  56. F.M. Moghaddam, M. Doulabi, H. Saeidian, Controlled microwave-assisted synthesis of Znfe2o4 nanoparticles and their catalytic activity for o-acylation of alcohol and phenol in acetic anhydride. Scientia Iranica 19(6), 1597–1600 (2012)

    Article  Google Scholar 

  57. K. Debnath, A. Pramanik, Heterogeneous bimetallic Znfe2o4 nanopowder catalysed facile four component reaction for the synthesis of spiro [indoline-3, 2′-quinoline] derivatives from Isatins in water medium. Tetrahedron Lett. 56(13), 1654–1660 (2015)

    Article  CAS  Google Scholar 

  58. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K.M. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express 7(1), 016116 (2020)

    Article  CAS  Google Scholar 

  59. C.G. Anchieta, E.C. Severo, C. Rigo, M.A. Mazutti, R.C. Kuhn, E.I. Muller, E.M.M. Flores, R.F.P.M. Moreira, E.L. Foletto, Rapid and facile preparation of zinc ferrite (Znfe2o4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-fenton reaction. Mater. Chem. Phys. 160, 141–147 (2015)

    Article  CAS  Google Scholar 

  60. Y. Pang, L. Kong, H. Lei, D. Chen, G. Yuvaraja, Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution. J. Taiwan Inst. Chem. Eng. 93, 397–404 (2018)

    Article  CAS  Google Scholar 

  61. N.A.Y. Abduh, A. Al-Kahtani, T.S. Algarni, A.-B. Al-Odayni, Selective oxidation of tetrahydrofuran to gamma-butyrolactone over spinel Znfe2o4 nanoparticle catalyst. Catalysts 13(4), 692 (2023)

    Article  CAS  Google Scholar 

  62. R.M. Tigote, K.P. Haval, S.K. Kazi, Znfe2o4 nanoparticles: an efficient and reusable catalyst for 2h-indazolo [2, 1-B] phthalazine-triones synthesis under solvent free condition. J. med. chem. drug discov. 3(2), 654 (2017)

    Google Scholar 

  63. L. Ghandi, M.K. Miraki, M. Karimi, I. Radfar, A. Heydari, A unique combination of Ki/Znfe2o4 as a catalyst for oxidative strecker reaction. Appl. Organomet. Chem. 33(1), e4616 (2019)

    Article  Google Scholar 

  64. K. Roy, V.S. Moholkar, Mechanistic analysis of carbamazepine degradation in hybrid advanced oxidation process of hydrodynamic cavitation/Uv/persulfate in the presence of Zno/Znfe2o4. Sep. Purif. Technol. 270, 118764 (2021)

    Article  CAS  Google Scholar 

  65. R. Zhang, T. Chen, G. Wang, Y. Guan, G. Yan, Z. Chen, Hu. Jianshe, Magnetic recyclable Cu/Znfe2o4 for catalytic reduction of nitroarenes and Cn bond formation reactions. Catal. Lett. 152(11), 3506–3516 (2022)

    Article  CAS  Google Scholar 

  66. A. Maleki, Z. Varzi, F. Hassanzadeh-Afruzi, Preparation and characterization of an eco-friendly Znfe2o4@ alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4h-pyran derivatives. Polyhedron 171, 193–202 (2019)

    Article  CAS  Google Scholar 

  67. E. Fadavipoor, S. Nazari, A.Z. Ahmadi, M. Gorjizadeh, M. Afshari, M. Keshavarz, Covalently supported sulfonic and acetic acids onto polypyrrole as green, cheap and recoverable solid acid catalysts for the synthesis of 4h-pyrano [2, 3-C] pyrazoles. Orient. J. Chem. 31(2), 733 (2015)

    Article  CAS  Google Scholar 

  68. H. Dogari, F. Hassanzadeh-Afruzi, A. Maleki, Znfe2o4@ dimethylglyoxime: preparation and catalyst application in the synthesis of 2-amino-tetrahydro-4h-chromene-3-carbonitrile derivatives. Chem. Proc. 3(1), 89 (2020)

    Google Scholar 

  69. Z. Varzi, A. Maleki, Design and preparation of Zns-Znfe2o4: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2, 4, 5-triaryl-1h-imidazoles. Appl. Organomet. Chem. 33(8), e5008 (2019)

    Article  Google Scholar 

  70. V. Hajdu, G. Muranszky, A. Prekob, F. Kristaly, B. Fiser, J. Lakatos, B. Viskolcz, L. Vanyorek, Palladium decorated nickel and zinc ferrite spinel nanoparticles applied in aniline synthesis-development of magnetic catalysts. J. Market. Res. 19, 3624–3633 (2022)

    CAS  Google Scholar 

  71. A.S. Singh, U.B. Patil, J.M. Nagarkar, Palladium supported on zinc ferrite: a highly active, magnetically separable catalyst for ligand free Suzuki and heck coupling. Catal. Commun. 35, 11–16 (2013)

    Article  CAS  Google Scholar 

  72. Y. Sui, X.B. Ma, X.B. Yang, C. Luo, Y. Zhang, Y. Wang, Renquan Zeng, Xiangkai Fu, Chengbin Gong. J. Mol. Catal. A: Chem. 229, 13 (2005)

    Google Scholar 

  73. H. Aghavandi, A. Ghorbani-Choghamarani, Preparation and application of Znfe2o4@ Sio2–So3h, as a novel heterogeneous acidic magnetic nanocatalyst for the synthesis of tetrahydrobenzo [b] pyran and 2, 3-dihydroquinazolin-4 (1h)-one derivative. Res. Chem. Intermed. 49(2), 441–467 (2023)

    Article  CAS  Google Scholar 

  74. A. Ghorbani-Choghamarani, H. Aghavandi, S.M. Talebi, A new copper-supported zinc ferrite as a heterogeneous magnetic nanocatalyst for the synthesis of Bis (pyrazolyl) methanes and oxidation of sulfides. Sci. Rep. 12(1), 20775 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  75. A.R. Abbasian, M.S. Afarani, One-step solution combustion synthesis and characterization of Znfe2O4 and Znfe1.6O4 nanoparticles. Appl. Phys. A 125, 1–12 (2019)

    Article  CAS  Google Scholar 

  76. M. Gholinejad, M. Afrasi, C. Najera, Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A3 coupling reaction in water. Appl. Organomet. Chem. 33(4), e4760 (2019)

    Article  Google Scholar 

  77. JK Sahoo, J Rath, P Dash, H Sahoo. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water. Paper presented at the AIP conference proceedings (2017).

  78. S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, Green synthesis of Ni-Cu-Zn ferrite nanoparticles using Tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl. Organomet. Chem. 31(12), e3823 (2017)

    Article  Google Scholar 

  79. J. Dantas, J.R.D. Santos, R.B.L. Cunha, R.H.G.A. Kiminami, A.C.F.M. Costa, Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters. Mater. Res. 16, 625–627 (2013)

    Article  CAS  Google Scholar 

  80. K. Winiarska, I. Szczygieł, R. Klimkiewicz, Manganese–zinc ferrite synthesis by the sol-gel autocombustion method: effect of the precursor on the ferrite’s catalytic properties. Ind. Eng. Chem. Res. 52(1), 353–361 (2013)

    CAS  Google Scholar 

  81. Y.H. Choi, E.C. Ra, E.H. Kim, K.Y. Kim, Y.J. Jang, K.-N. Kang, S.H. Choi, J.-H. Jang, J.S. Lee, Sodium-containing spinel zinc ferrite as a catalyst precursor for the selective synthesis of liquid hydrocarbon fuels. Chemsuschem 10(23), 4764–4770 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. S. TaghaviFardood, A. Ramazani, Z. Golfar, S.W. Joo, Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable catalyst for the synthesis of hexabenzylhexaazaisowurtzitane under ultrasonic irradiation. J. Struct. Chem. 59, 1730–1736 (2018)

    Article  CAS  Google Scholar 

  83. Z. Beji, M. Sun, L.S. Smiri, F. Herbst, C. Mangeney, S. Ammar, Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application. RSC Adv. 5(80), 65010–65022 (2015)

    Article  CAS  Google Scholar 

  84. M. Kurian, D.S. Nair, On the efficiency of cobalt zinc ferrite nanoparticles for catalytic wet peroxide oxidation of 4-chlorophenol. J. Environ. Chem. Eng. 2(1), 63–69 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the management of SGT University, Gurugram, Haryana, India, the management of Presidency University, Rajanukunte, Itgalpura, Bangalore, India and Islamic Azad University, Shoushtar, Iran for providing the required facilities to write and submit the article for publication. S.A.C.C. acknowledges Fundação para a Ciência e a Tecnologia (FCT) for Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018) and to the Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020).

Funding

This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) for Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018) and to the Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.A.; Investigation, C. and V.C.; Data curation, V.C; Writing—original draft, C. and B.A.; Writing—review & editing, S.A.C.C., M.A and B.A.; Supervision, S.A.C.C.. and M.A. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sónia A. C. Carabineiro or Mozhgan Afshari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjaneyulu, B., Chinmay, Chauhan, V. et al. Recent Advances on Zinc Ferrite and Its Derivatives as the Forerunner of the Nanomaterials in Catalytic Applications. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02952-x

Keywords

Navigation