Skip to main content
Log in

Phenolic compounds removal by wet air oxidation based processes

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autenrieth R L, Bonner J S, Akgerman A, Okaygun M, McCreary E M. Biodegradation of phenolic watstes. Journal of Hazardous Materials, 1991, 28(1–2): 29–53

    Article  CAS  Google Scholar 

  2. Stich H F. The beneficial and hazardous effects of simple phenoliccompounds. Mutation Research, 1991, 259(3–4): 307–324

    Article  CAS  Google Scholar 

  3. Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 2014, 53(8): 2215–2234

    Article  CAS  Google Scholar 

  4. Rappoport Z. The Chemistry of Phenols. New York: JohnWiley & Sons, 2004

    Google Scholar 

  5. Veeresh G S, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 2005, 39(1): 154–170

    Article  CAS  Google Scholar 

  6. Ribeiro A R, Nunes O C, Pereira M F, Silva A M. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environment International, 2015, 75: 33–51

    Article  CAS  Google Scholar 

  7. Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51–59

    Article  CAS  Google Scholar 

  8. Debellefontaine H, Chakchouk M, Foussard J N, Tissot D, Striolo P. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation(R). Environmental Pollution, 1996, 92(2): 155–164

    Article  CAS  Google Scholar 

  9. Dietrich M J, Rall T L, Canney P J. Wet air oxidation of hazardous organics in wastewater. Environment and Progress, 1985, 4(3): 171–177

    Article  CAS  Google Scholar 

  10. Freeman H. Standard Handbook of Hazardous Waste Treatment and Disposal. New York: McGraw-Hill Book Co., 1989

    Google Scholar 

  11. Kim K H, Ihm S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 2011, 186(1): 16–34

    Article  CAS  Google Scholar 

  12. Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160

    Article  CAS  Google Scholar 

  13. Levec J, Pintar A. Catalytic wet-air oxidation processes: a review. Catalysis Today, 2007, 124(3–4): 172–184

    Article  CAS  Google Scholar 

  14. Guo J, Al-Dahhan M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chemical Engineering Science, 2005, 60(3): 735–746

    Article  CAS  Google Scholar 

  15. Imamura S. Catalytic and noncatalytic wet oxidation. Industrial & Engineering Chemistry Research, 1999, 38(5): 1743–1753

    Article  CAS  Google Scholar 

  16. Bhargava S K, Tardio J, Prasad J, Foger K, Akolekar D B, Grocott S C. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221–1258

    Article  CAS  Google Scholar 

  17. Devlin H R, Harris I J. Mechanism of the oxidation of aqueous phenol of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals, 1984, 23(4): 387–392

    Article  CAS  Google Scholar 

  18. Kolaczkowski S T, Beltran F J, McLurgh D B, Rivas F J. Wet air oxidation of phenol: factors that may influence global kinetics. Process Safety and Environmental Protection, 1997, 75(4 B4): 257–265

    Article  CAS  Google Scholar 

  19. Pintar A, Levec J. Catalytic-oxidation of aqueous p-chlorophenol and p-nitrophenol solutions. Chemical Engineering Science, 1994, 49(24): 4391–4407

    Article  CAS  Google Scholar 

  20. Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substitued phenols. Water Research, 1991, 25(2): 135–145

    Article  CAS  Google Scholar 

  21. Rivas F J, Kolaczkowski S T, Beltran F J, McLurgh D B. Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53(14): 2575–2586

    Article  CAS  Google Scholar 

  22. Lin S H, Chuang T S. Combined treatment of phenol of phenolic wastewater by wet air oxidation and activated sludge. Toxicological and Environmental Chemistry, 1994, 44(3–4): 243–258

    Article  CAS  Google Scholar 

  23. Shibaeva L V. Oxidation of phenol with molecular oxygen in aqueous solutions I. The kinetics of the oxidation of phenol with oxygen. Kinetics and Catalysis, 1969, 10: 832–836

    Google Scholar 

  24. Willms R S, Balinsky AM, Reible D D,Wetzel DM, Harrison D P. Aqueous phase oxidation: the intrinsic kinetics of single organic compounds. Industrial & Engineering Chemistry Research, 1987, 26(1): 148–154

    Article  CAS  Google Scholar 

  25. Vicente J, Rosal R, Diaz M. Noncatalytic oxidation of phenol in aqueous solutions. Industrial & Engineering Chemistry Research, 2002, 41(1): 46–51

    Article  CAS  Google Scholar 

  26. Pruden B, Le H. Wet air oxidation of soluble components in waste water. Canadian Journal of Chemical Engineering, 1976, 54(4): 319–325

    Article  CAS  Google Scholar 

  27. Jaulin L, Chornet E. High shear jet-mixers as two-phase reactors: an application to the oxidation of phenol in aqueous media. Canadian Journal of Chemical Engineering, 1987, 65(1): 64–70

    Article  CAS  Google Scholar 

  28. Mundale V D, Joglekar H S, Kalam A, Joshi J B. Regeneration of spent acitivated carbon by wet air oxidation. Canadian Journal of Chemical Engineering, 1991, 69(5): 1149–1159

    Article  CAS  Google Scholar 

  29. Vaidya P D, Mahajani V V. Insight into subcritical wet oxidation of phenol. Advances in Environmental Research, 2002, 6(4): 429–439

    Article  CAS  Google Scholar 

  30. Arena F, Italiano C, Raneri A, Saja C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Applied Catalysis B: Environmental, 2010, 99(1–2): 321–328

    Article  CAS  Google Scholar 

  31. Tufano V. A multi-step kinetic model for phenol oxidation in highpressure water. Chemical Engineering & Technology, 1993, 16(3): 186–190

    Article  CAS  Google Scholar 

  32. Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water. AIChE Journal, 1995, 41(8): 1864–1873

    Article  CAS  Google Scholar 

  33. Gopalan S, Savage P E. Reaction mechanism for phenol oxidation in supercritical water. Journal of Physical Chemistry, 1994, 98(48): 12646–12652

    Article  CAS  Google Scholar 

  34. Suárez-Ojeda M E, Carrera J, Metcalfe I S, Font J. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: refractory nature of the WAO intermediates. Chemical Engineering Journal, 2008, 144(2): 205–212

    Article  CAS  Google Scholar 

  35. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109

    Article  CAS  Google Scholar 

  36. Fu D M, Zhang F F, Wang L Z, Yang F, Liang X M. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chinese Journal of Catalysis, 2015, 36(7): 952–956

    Article  CAS  Google Scholar 

  37. Priyanka S V, Srivastava V C, Mall I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 2014, 125: 284–290

    Article  CAS  Google Scholar 

  38. Messele S A, Soares O S G P, Órfão J J M, Stüber F, Bengoa C, Fortuny A, Fabregat A, Font J. Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154–155: 329–338

    Article  CAS  Google Scholar 

  39. Ayusheev A B, Taran O P, Seryak I A, Podyacheva O Y, Descorme C, Besson M, Kibis L S, Boronin A I, Romanenko A I, Ismagilov Z R, Parmon V. Ruthenium nanoparticles supported on nitrogendoped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146: 177–185

    Article  CAS  Google Scholar 

  40. Podyacheva O Y, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Platinum nanoparticles supported on nitrogencontaining carbon nanofibers. Catalysis Today, 2012, 186(1): 42–47

    Article  CAS  Google Scholar 

  41. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V. Preparation of activated carbon-metal oxide hybrid catalysts: textural characterization. Fuel Processing Technology, 2014, 126: 95–103

    Article  CAS  Google Scholar 

  42. Akyurtlu J F, Akyurtlu A, Kovenklioglu S. Catalytic oxidation of phenol in aqueous solutions. Catalysis Today, 1998, 40(4): 343–352

    Article  CAS  Google Scholar 

  43. Fortuny A, Bengoa C, Font J, Fabregat A. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 1999, 64(2): 181–193

    Article  CAS  Google Scholar 

  44. Yang S, Zhu W, Wang J, Chen Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Journal of Hazardous Materials, 2008, 153(3): 1248–1253

    Article  CAS  Google Scholar 

  45. Espinosa de los Monteros A, Lafaye G, Cervantes A, Del Angel G, Barbier J, Torres G. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides. Catalysis Today, 2015, 258: 564–569

    Article  CAS  Google Scholar 

  46. Messele S A. Homogenous and heterogenous aqueous phase oxidation of phenol with fenton like process. Doctoral Thesis universitat Rovira I Virgili 2014

  47. Shalagina A E, Ismagilov Z R, Podyacheva O Y, Kvon R I, Ushakov V A. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon, 2007, 45(9): 1808–1820

    Article  CAS  Google Scholar 

  48. Ribeiro R S, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants: a review. Applied Catalysis B: Environmental, 2016, 187: 428–460

    Article  CAS  Google Scholar 

  49. Baricot M, Dastgheib S A, Fortuny A, Stüber F, Bengoa Ch, Fabregat A. Catalytic wet air oxidation of phenol by surface modified activated carbons. Canadian Journal of Chemical Engineering, 2004, 69(1): 1–6

    Google Scholar 

  50. Janecki D, Szczotka A, Burghardt A, Bartelmus G. Modelling wetair oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(3): 596–607

    Article  CAS  Google Scholar 

  51. Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Applied Catalysis B: Environmental, 1998, 19(3–4): 165–173

    Article  CAS  Google Scholar 

  52. Soares O S G P, Rocha R P, Gonçalves A G, Figueiredo J L, Órfão J J M, Pereira M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192: 296–303

    Article  CAS  Google Scholar 

  53. Yang S, Li X, Zhu W, Wang J, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452

    Article  CAS  Google Scholar 

  54. Rocha R P, Sousa J P S, Silva A M T, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336

    Article  CAS  Google Scholar 

  55. Yang S X, Sun Y, Yang H W, Wan J F. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Frontiers of Environmental Science & Engineering, 2014, 9(3): 436–443

    Article  CAS  Google Scholar 

  56. Wang J, Fu W, He X, Yang S, Zhu W. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway. Joural of Enviromental Sciences, 2014, 26(8): 1741–1749

    CAS  Google Scholar 

  57. Quintanilla A, Menéndez N, Tornero J, Casas J A, Rodríguez J J. Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81(1–2): 105–114

    Article  CAS  Google Scholar 

  58. Oliviero L, Barbier-Jr J, Duprez D, Guerrero-Ruiz A, Bachiller- Baeza B, Rodriguez-Ramos I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts. Applied Catalysis B: Environmental, 2000, 25(4): 267–275

    Article  CAS  Google Scholar 

  59. Stuber F, Polaert I, Delmas H, Font J, Fortuny A, Fabregat A. Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(7): 743–751

    Article  CAS  Google Scholar 

  60. Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catalysis Today, 2005, 107–08: 126–132

    Article  CAS  Google Scholar 

  61. Pires C A, dos Santos A C C, Jordao E. Oxidation of phenol in aqueous solution with copper oxide catalysts supported on g- Al2O3, pillared clay and TiO2: comparsion of the performance and costs associated with each catalyst. Brazilian Journal of Chemical Engineering, 2015, 32(4): 837–848

    Article  Google Scholar 

  62. Ksontini N, Najjar W, Ghorbel A. Al-Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115

    Article  CAS  Google Scholar 

  63. Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 1998, 5(1): 5–41

    Article  CAS  Google Scholar 

  64. Guo J, Al-Dahhan M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Applied Catalysis A: General, 2006, 299: 175–184

    Article  CAS  Google Scholar 

  65. Wu Q, Hu X, Yue P L, Zhao X S, Lu G Q. Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 2001, 32(3): 151–156

    Article  CAS  Google Scholar 

  66. Lin S S Y, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions. Water Research, 2003, 37(4): 793–800

    Article  CAS  Google Scholar 

  67. Chen I P, Lin S S, Wang C H, Chang S H. CWAO of phenol using CeO2/g-Al2O3 with promoter effectiveness of promoter addition and catalyst regeneration. Chemosphere, 2007, 66(1): 172–178

    Article  CAS  Google Scholar 

  68. Chang L Z, Chen I P, Lin S S. An assessment of the suitable operating conditions for the CeO2/g-Al2O3 catalyzed wet air oxidation of phenol. Chemosphere, 2005, 58(4): 485–492

    Article  CAS  Google Scholar 

  69. Hocevar S, Krasovec U O, Orel B, Arico A S, Kim H. CWO of phenol on two differently prepared CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28(2): 113–125

    Article  CAS  Google Scholar 

  70. Delgado J J, Chen X, Pérez-Omil J A, Rodríguez-Izquierdo J M, Cauqui M A. The effect of reaction conditions on the apparent deactivation of Ce-Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180(1): 25–33

    Article  CAS  Google Scholar 

  71. Parvas M, Haghighi M, Allahyari S. Degradation of phenol via wet air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environmental Technology, 2014, 35 (9–12): 1140–1149

    Article  CAS  Google Scholar 

  72. Parvas M, Haghighi M, Allahyari S. Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 2014

    Google Scholar 

  73. Arena F, Italiano C, Drago Ferrante G, Trunfio G, Spadaro L. A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Applied Catalysis B: Environmental, 2014, 144: 292–299

    Article  CAS  Google Scholar 

  74. Chen H, Sayari A, Adnot A, Larachi F. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental, 2001, 32(3): 195–204

    Article  Google Scholar 

  75. Gutiérrez M, Pina P, Torres M, Cauqui M A, Herguido J. Catalytic wet oxidation of phenol using membrane reactors: a comparative study with slurry-type reactors. Catalysis Today, 2010, 149(3–4): 326–333

    Article  CAS  Google Scholar 

  76. Aihua X, Chenglin S. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol. Environmental Technology, 2012, 33(10–12): 1339–1344

    Google Scholar 

  77. Toledo J A, Valenzuela M A, Bosch P, Armendariz H, Montoya A, Nava N, Vazquez A. Effect of Al3+ introduction into hydrothermally prepared ZnFe2O4. Applied Catalysis A: General, 2000, 198(1–2): 235–245

    Article  CAS  Google Scholar 

  78. Xu A, Yang M, Qiao R, Du H, Sun C. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol. Journal of Hazardous Materials, 2007, 147(1–2): 449–456

    Article  CAS  Google Scholar 

  79. Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J E. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Applied Catalysis B: Environmental, 2001, 30(1–2): 195–207

    Article  CAS  Google Scholar 

  80. Li N, Descorme C, Besson M. Application of Ce0.33Zr0.63Pr0.04O2- supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: influence of the reaction conditions. Applied Catalysis B: Environmental, 2008, 80(3–4): 237–247

    Article  CAS  Google Scholar 

  81. Lafaye G, Barbier J Jr, Duprez D. Impact of cerium-based support oxides in catalytic wet air oxidation: conflicting role of redox and acid-base properties. Catalysis Today, 2015, 253: 89–98

    Article  CAS  Google Scholar 

  82. Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58

    Article  CAS  Google Scholar 

  83. Yamaguchi T, Ikeda N, Hattori H, Tanabe K. Surface and catalytic propeties of cerium oxide. Journal of Catalysis, 1981, 67(2): 324–330

    Article  CAS  Google Scholar 

  84. Jampaiah D, Venkataswamy P, Tur K M, Ippolito S J, Bhargava S K, Reddy B M. Effect of MnOx loading on structural, surface, and catalytic properties of CeO2-MnOx mixed oxides prepared by Sol-Gel method. Zeitschrift fur Anorganische und Allgemeine Chemie, 2015, 641(6): 1141–1149

    Article  CAS  Google Scholar 

  85. Wu X D, Liang Q, Weng D, Fan J, Ran R. Synthesis of CeO2- MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today, 2007, 126(3–4): 430–435

    Article  CAS  Google Scholar 

  86. Khachatryan L, Lomnicki S, Dellinger B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere, 2007, 68(9): 1741–1750

    Article  CAS  Google Scholar 

  87. Rocha M A L, Del Ángel G, Torres-Torres G, Cervantes A, Vázquez A, Arrieta A, Beltramini J N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today, 2015, 250: 145–154

    Article  CAS  Google Scholar 

  88. Imamura S, Fukuda I, Ishida S. Wet oxidatrion catalyzed by ruthenium supported on cerium(IV) oxides. Industria & Engineering Chemistry Research, 1988, 27(4): 718–721

    Article  CAS  Google Scholar 

  89. Keav S, Espinosa de los Monteros A, Barbier J, Duprez D. Wet air oxidation of phenol over Pt and Ru catalysts supported on ceriumbased oxides: resistance to fouling and kinetic modelling. Applied Catalysis B: Environmental, 2014, 150–151: 402–410

    Article  CAS  Google Scholar 

  90. Wei H, Yan X, He S, Sun C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catalysis Today, 2013, 201: 49–56

    Article  CAS  Google Scholar 

  91. Wang J, Zhu W, Yang S, Wang W, Zhou Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37

    Article  CAS  Google Scholar 

  92. Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength pnitrophenol wastewater over Ru and Pt catalysts: influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–124: 141–150

    Article  CAS  Google Scholar 

  93. Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F. Catalytic wet oxidation of phenol over PtxAg1–x MnO2/CeO2 catalysts. Catalysis Today, 2000, 62(4): 379–388

    Article  CAS  Google Scholar 

  94. Massa P, Ivorra F, Haure P, Cabello F M, Fenoglio R. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2-Al2O3 catalysts prepared by different methods. Catalysis Communications, 2007, 8(3): 424–428

    Article  CAS  Google Scholar 

  95. Yu C, Meng X, Chen G, Zhao P. Catalytic wet air oxidation of high-concentration organic pollutants by upflow packed-bed reactor using a Ru-Ce catalyst derived from a Ru3(CO)12 precursor. RSC Advances, 2016, 6(27): 22633–22638

    Article  CAS  Google Scholar 

  96. Sang-Kyung K, Son-Ki I. Effects of Ce addition and Pt precursor on the activity of Pt/Al2O3 catalysts for wet oxidation of phenol, 2002: 1967–1972

  97. Li N, Descorme C, Besson M. Catalytic wet air oxidation of 2- chlorophenol over Ru loaded CexZr1–x O2 solid solutions. Applied Catalysis B: Environmental, 2007, 76(1–2): 92–100

    Article  CAS  Google Scholar 

  98. Manole C C, Julcour-Lebigue C, Wilhelm A M, Delmas H. Catalytic oxidation of 4-hydroxybenzoic acid on activated carbon in batch autoclave and fixed-bed reactors. Industrial & Engineering Chemistry Research, 2007, 46(25): 8388–8396

    Article  CAS  Google Scholar 

  99. Iojoiu E E, Walmsley J C, Raeder H, Miachon S, Dalmon J A. Catalytic membrane structure influence on the pressure effects in an interfacial contactor catalytic membrane reactor applied to wet air oxidation. Catalysis Today, 2005, 104(2–4): 329–335

    Article  CAS  Google Scholar 

  100. Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2004, 79(5): 431–454

    Article  CAS  Google Scholar 

  101. Guisasola A, Baeza J A, Carrera J, Casas C, Lafuente J. An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP. Water Science and Technology, 2003, 48(11–12): 267–275

    CAS  Google Scholar 

  102. Mantzavinos D, Sahibzada M, Livingston A G, Metcalfe I S, Hellgardt K. Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53(1): 93–106

    Article  CAS  Google Scholar 

  103. Mantzavinos D, Hellenbrand R, Livingston A G, Metcalfe I S. Beneficial combination of wet oxidation, membrane separation and biodegradation processes for treatment of polymer processing wastewaters. Canadian Journal of Chemical Engineering, 2000, 78 (2): 418–422

    Article  CAS  Google Scholar 

  104. Hellenbrand R, Mantzavinos D, Metcalfe I S, Livingston A G. Integration of wet oxidation and nanofiltration for treatment of recalcitrant organics in wastewater. Industrial & Engineering Chemistry Research, 1997, 36(12): 5054–5062

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 51425405), Beijing Natural Science Foundation (No. 8172043) and Chinese Academy of Sciences (ZDRW-ZS-2016-5-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Cao, H., Descorme, C. et al. Phenolic compounds removal by wet air oxidation based processes. Front. Environ. Sci. Eng. 12, 1 (2018). https://doi.org/10.1007/s11783-017-0970-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0970-2

Keywords

Navigation