Skip to main content
Log in

Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

A new method called ultrasonic-assisted membrane reaction (UAMR) was reported for the fabrication of ceria-zirconia solid solution. A series of ceria-zirconia solid solutions with different Ce/Zr molar ratios were prepared by the UAMR method and characterized by X-ray diffraction (XRD), N2 adsorption, hydrogen temperature-programmed reduction (H2-TPR), scanning electron microscope (SEM), and transmission electron microscopy (TEM) techniques. The UAMR method proved to be superior, especially when the Ce/Zr molar ratio was lower than 1, in fabricating ceria-zirconia solid solutions with large BET surface area, high oxygen storage capacity (OSC), and low reduction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fornasiero P, Balducci G, Di Monte R, Kašpar J. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2. Journal of Catalysis, 1996, 164(1): 173–183

    Article  CAS  Google Scholar 

  2. Balducci G, Fornasiero P, Di Monte, R. An unusual promotion of the redox behavior of CeO2-ZrO2 solid solutions upon sintering at high temperatures. Catalysis Letter, 1995, 33: 193–200

    Article  CAS  Google Scholar 

  3. Zhang Q, Wei J, Shen MQ, Wang, J. Effect of different mixing ways in palladium/ceria-zirconia/alumina preparation on partial oxidation of methane. Journal of Rare Earths, 2008, 26(5): 700–704

    Article  CAS  Google Scholar 

  4. Escritori J C, Dantas S C, Soares R R, Hori C E. Methane autothermal reforming on nickel-ceria-zirconia based catalysts. Catalysis Communications, 2009, 10(7): 1090–1094

    Article  CAS  Google Scholar 

  5. Reddy B M, Thrimurthulu G, Saikia P, Bharali P. Silica supported ceria and ceria-zirconia nanocomposite oxides for selective dehydration of 4-methylpentan-2-ol. Journal of Molecular Catalysis: A, Chemical, 2007, 275: 167–173

    Article  CAS  Google Scholar 

  6. Radhakrishnan R, Willigan R R, Dardas Z, Vanderspurt T H. Water gas shift activity and kinetics of Pt/Re catalysts supported on ceria-zirconia oxides. Applied Catalysis B: Environmental, 2006, 66(20): 23–28

    Article  CAS  Google Scholar 

  7. Djurcic B, McGarry D, Pickering S. The preparation of ultrafine ceria-stabilized zirconia particles coated with yttria. Journal of Materials Science Letters, 1993, 12(16): 1320–1323

    Article  Google Scholar 

  8. Deptula A, Carewska M, Olczak T, Lada W, Croce F. Sintering of ZrO2-CeO2 Spherical Powders Prepared by a Water Extraction Variant of the Sol-Gel Process. Journal of the Electrochemical Society, 1993, 140(8): 2294–2297

    Article  CAS  Google Scholar 

  9. Potdar H S, Deshpande S B, Deshpande A S, Gokale S P, Khollam Y B, Patil A J, Date S K. Preparation of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route. Materials Chemistry and Physics, 2002, 74(1): 306–312

    Article  CAS  Google Scholar 

  10. Maschio S, Piras A, Schmid C, Lucchini E. Effects of attrition milling on precursors of Al2O3 and 12Ce-TZP powders. Journal of European Ceramic Society, 2001, 21: 589–594

    Article  CAS  Google Scholar 

  11. Teng M, Luo L, Yang X. Synthesis of mesoporous Ce1-x ZrxO2 (x = 0.2–0.5) and catalytic properties of CuO based catalysts. Micro-porous and Mesoporous Materials, 2009, 119(1): 158–164

    Article  CAS  Google Scholar 

  12. Dobrosz-Gómez I, Kocemba I, Rynkowski J M. Au/Ce1-x ZrxO2 as effective catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2008, 83(23): 240–255

    Article  Google Scholar 

  13. Cabanas A, Darr J A, Lester E, Poliakoff M. Continuous hydrothermal synthesis of inorganic materials in a near critical water flow reactor; the one-step synthesis of nano-particulate Ce1-x ZrxO2 (x =0–1) solid solutions. Journal of Materials Chemistry, 2001, 11: 561–568

    Article  CAS  Google Scholar 

  14. Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Liu H C, Y C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes. Journal of Physical Chemistry B, 2005, 109(51): 24380–24385

    Article  CAS  Google Scholar 

  15. Zhai S, Wei W, Wu D, Sun Y. Synthesis, characterization and catalytic activities of mesoporous AlMSU-X with wormhole-like framework structure. Catalysis Letter, 2003, 89: 261–267

    Article  CAS  Google Scholar 

  16. Madier Y, Descorme C, Le Govic A M, Duprez D. Oxygen Mobility in CeO2 and CexZr(1-x)O2 Compounds: Study by CO Transient Oxidation and 18O/16O Isotopic Exchange. Journal of Physical Chemistry B, 1999,103 (50): 10999–11006

    Article  CAS  Google Scholar 

  17. Parvulescu V, Anastasescu C, Su B L. Bimetallic Ru-(Cr, Ni, or Cu) and La-(Co or Mn) incorporated MCM-41 molecular sieves as catalysts for oxidation of aromatic hydrocarbons. Journal of Molecular Catalysis A: Chemical, 2004, 211(15): 143–148

    Article  CAS  Google Scholar 

  18. Wei Z L, Li H M, Zhang X Y, Yan S H, Lv Z, Chen Y Q, Gong MC. Preparation and property investigation of CeO2-ZrO2-Al2O3 oxygen-storage compounds. Journal of Alloy and Compounds, 2008, 455: 322–326

    Article  CAS  Google Scholar 

  19. Kim J R, Myeong W J, Ihm S K. Characteristics in oxygen storage capacity of ceria-zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water. Applied Catalysis B: Environmental, 2007, 71: 57–63

    Article  CAS  Google Scholar 

  20. Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50: 285–298

    Article  Google Scholar 

  21. Kašpar J, Fornasiero, P, Hickey N. Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003, 77: 419–449

    Article  Google Scholar 

  22. Wang X H, Lu G Z, Guo Y, Xue Y Y, Jiang L Z, Guo Y L, Zhang Z G. Structure, thermal-stability and reducibility of Si-doped Ce-Zr-O solid solution. Catalysis Today, 2007, 126: 412–419

    Article  CAS  Google Scholar 

  23. Yao H C, Yu Yao Y F. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265

    Article  CAS  Google Scholar 

  24. Johnson M F L, Mooi J. Cerium dioxide crystallite sizes by temperature-programmed reduction. Journal of Catalysis, 1987, 103: 502–505

    Article  CAS  Google Scholar 

  25. Larese C, Granados M L, Mariscal R, Fierro J L G, Lambrou P S, Efstathiou A M. The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce-Zr-O metal oxides modified by phosphorus incorporation. Applied Catalysis B: Environmental, 2005, 59: 13–25

    Article  CAS  Google Scholar 

  26. Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D. Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2-ZrO2. Catalysis Today, 2004, 93–95: 827–832

    Article  Google Scholar 

  27. Kašpar J, Fornasiero P. Nanostructured materials for advanced automotive de-pollution catalysts. Journal of Solid State Chemistry, 2003, 171: 19–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, L., Liu, L., Zi, X. et al. Preparation of ceria-zirconia solid solution with enhanced oxygen storage capacity and redox performance. Front. Environ. Sci. Eng. China 4, 164–171 (2010). https://doi.org/10.1007/s11783-010-0019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0019-2

Keywords

Navigation