Skip to main content
Log in

Enhanced mechanical stability and corrosion resistance of superhydrophobic coating reinforced with inorganic binder

无机黏结剂强化的超疏水涂层及其机械稳定性和抗腐蚀性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The development of superhydrophobic materials have demonstrated significant potential in the realm of corrosion protection for aluminum alloy (Al alloy) surfaces. However, the limited mechanical stability of superhydrophobic surfaces has impeded the rapid advancement in this field. In this research, we synthesized an aluminum phosphate (AP) inorganic binder and combined it with hydrophobic fumed SiO2 (HF−SiO2) nanoparticles and polydimethylsiloxane (PDMS) to develop a HF-SiO2@PDMS@AP superhydrophobic composite coating with improved mechanical stability on Al alloy substrates using a simple spray-coating technique. The findings indicate that the addition of the AP inorganic binder significantly enhanced the coating’s resistance to abrasion, maintaining its superhydrophobic properties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm. Electrochemical impedance spectroscopy (EIS) testing showed that the low-frequency modulus (∣Z∣0.01Hz) of the HF-SiO2@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloy substrate, resulting in a substantial improvement in corrosion protection capacity. The impressive corrosion resistance and mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of such materials for surface functional protection in marine and industrial environments.

摘要

超疏水材料的发展在铝合金表面腐蚀防护领域展现出了巨大应用潜力。然而, 超疏水表面机械稳定性不足一直是限制该领域快速发展的难题。本研究通过合成铝磷酸盐(AP)无机黏合剂, 并与疏水性气相二氧化硅(HF-SiO2)纳米颗粒和聚二甲基硅氧烷(PDMS)相结合, 利用操作简便的喷涂技术在铝合金基体制备出了具有良好机械稳定性的HF−SiO2@PDMS@AP超疏水复合涂层。研究结果表明, AP无机粘合剂的引入显著提高了涂层的耐磨性, 即使在经历了2000 cm的砂纸磨损后, 表面仍能保持其超疏水性能和微纳米多级结构。电化学阻抗谱(EIS)测试结果显示, 与初始的铝合& #x91D1;基体相比, HF−SiO2@PDMS@AP超疏水涂层的电荷转移电阻(Rct)提升5 个数量级, 低频模值(|Z|0.01Hz)提升4 个数量级, 缓蚀效率可达99.99%, 展现出了优异的抗腐蚀能力。该涂层所具有的机械稳定性和耐腐蚀性能有望大幅拓展其在海洋和工业环境中的表面功能防护应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NAVASER M, ATAPOUR M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy [J]. Journal of Materials Science & Technology, 2017, 33(2): 155–165. DOI: https://doi.org/10.1016/j.jmst.2016.07.008.

    Article  CAS  Google Scholar 

  2. SUN Yuan-wei, WANG Zi-yi, PAN Qing-lin, et al. Localized corrosion process of Al−Zn−Mg−Cu−Zr alloy: Transitions from pitting corrosion to intergranular corrosion [J]. Journal of Central South University, 2023, 30(7): 2120–2132. DOI: https://doi.org/10.1007/s11771-023-5383-8.

    Article  CAS  Google Scholar 

  3. SHAO Hong-bang, HUANG Yuan-chun, WANG Yan-ling. Effect of ageing process on microstructure, corrosion behaviors and mechanical properties of Al−5.6Zn−1.6Mg−0.05Zr alloy [J]. Journal of Central South University, 2022, 29(3): 1029–1040. DOI: https://doi.org/10.1007/s11771-022-4953-5.

    Article  CAS  Google Scholar 

  4. BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J]. Progress in Materials Science, 2011, 56(1): 1–108. DOI: https://doi.org/10.1016/j.pmatsci.2010.04.003.

    Article  CAS  Google Scholar 

  5. ZHANG Bin-bin, YANG Guang, FAN Xiao-qiang, et al. Intermediate-layer strengthened superhydrophobic coating with stable corrosion resistance, delayed icing and long-term weatherability [J]. Journal of Industrial and Engineering Chemistry, 2023, 127: 331–342. DOI: https://doi.org/10.1016/j.jiec.2023.07.018.

    Article  CAS  Google Scholar 

  6. WANG Qing-hua, WANG Hui-xin. Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities [J]. Journal of Central South University, 2022, 29(10): 3217–3247. DOI: https://doi.org/10.1007/s11771-022-5140-4.

    Article  Google Scholar 

  7. XU Fei-fan, WANG Fa-jun, OU Jun-fei. Superhydrophobic polytetrafluoroethylene/polyvinylidene fluoride coating for passive daytime radiative refrigeration [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132121. DOI: https://doi.org/10.1016/j.colsurfa.2023.132121.

    Article  CAS  Google Scholar 

  8. ZHANG Bin-bin, XU Wei-chen. Superhydrophobic, superamphiphobic and SLIPS materials as anti-corrosion and anti-biofouling barriers [J]. New Journal of Chemistry, 2021, 45(34): 15170–15179. DOI: https://doi.org/10.1039/D1NJ03158A.

    Article  CAS  Google Scholar 

  9. LI Zi-ang, LI Chang-quan, OU Jun-fei, et al. Water and mildew proof SiO2 & ZnO/silica Sol superhydrophobic composite coating on a circuit board [J]. RSC Advances, 2021, 11(35): 21862–21869. DOI: https://doi.org/10.1039/d1ra03140f.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. LI Wei-zhen, CHU Dong-kai, QU Shuo-shuo, et al. Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation [J]. Journal of Central South University, 2022, 29(10): 3368–3375. DOI: https://doi.org/10.1007/s11771-022-5157-8.

    Article  Google Scholar 

  11. VENKATESWARA RAO A, KULKARNI M M, BHAGAT S D. Transport of liquids using superhydrophobic aerogels [J]. Journal of Colloid and Interface Science, 2005, 285(1): 413–418. DOI: https://doi.org/10.1016/j.jcis.2004.11.033.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. HE Wen-bo, OU Jun-fei, WANG Fa-jun, et al. Transparent and superhydrophobic coating via one-step spraying for cultural relic protection against water and moisture [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662: 130949. DOI: https://doi.org/10.1016/j.colsurfa.2023.130949.

    Article  CAS  Google Scholar 

  13. ABU-THABIT N Y, UWAEZUOKE O J, ABU ELELLA M H. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures [J]. Chemosphere, 2022, 294: 133644. DOI: https://doi.org/10.1016/j.chemosphere.2022.133644.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. WEI Jin-fei, ZHANG Jiao-jiao, CAO Xiao-jun, et al. Durable superhydrophobic coatings for prevention of rain attenuation of 5G/weather radomes [J]. Nature Communications, 2023, 14: 2862. DOI: https://doi.org/10.1038/s41467-023-38678-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. ZHANG Bin-bin, YAN Jia-yang, XU Wei-chen, et al. Robust, scalable and fluorine-free superhydrophobic anticorrosion coating with shielding functions in marine submerged and atmospheric zones [J]. Materials & Design, 2022, 223: 111246. DOI: https://doi.org/10.1016/j.matdes.2022.111246.

    Article  CAS  Google Scholar 

  16. NING Tao, XU Wen-guo, LU Shi-xiang. Fabrication of superhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers [J]. Applied Surface Science, 2011, 258(4): 1359–1365. DOI: https://doi.org/10.1016/j.apsusc.2011.09.064.

    Article  ADS  CAS  Google Scholar 

  17. RAGHEB D M, ABDEL-GABER A M, MAHGOUB F M, et al. Eco-friendly method for construction of superhydrophobic graphene-based coating on copper substrate and its corrosion resistance performance [J]. Scientific Reports, 2022, 12: 17929. DOI: https://doi.org/10.1038/s41598-022-22915-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. MOUSAVI S M A, PITCHUMANI R. A study of corrosion on electrodeposited superhydrophobic copper surfaces [J]. Corrosion Science, 2021, 186: 109420. DOI: 10.1016/j.corsci.2021.109420.

    Article  CAS  Google Scholar 

  19. FENG Li-bang, CHE Yan-hui, LIU Yan-hua, et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method [J]. Applied Surface Science, 2013, 283: 367–374. DOI: https://doi.org/10.1016/j.apsusc.2013.06.117.

    Article  ADS  CAS  Google Scholar 

  20. WEI Jin-fei, LI Bu-cheng, JING Ling-yun, et al. Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating [J]. Chemical Engineering Journal, 2020, 390: 124562. DOI: https://doi.org/10.1016/j.cej.2020.124562.

    Article  CAS  Google Scholar 

  21. JENA G, THINAHARAN C, GEORGE R P, et al. Robust nickel-reduced graphene oxide-myristic acid superhydrophobic coating on carbon steel using electrochemical codeposition and its corrosion resistance [J]. Surface and Coatings Technology, 2020, 397: 125942. DOI: https://doi.org/10.1016/j.surfcoat.2020.125942.

    Article  CAS  Google Scholar 

  22. HUANG Ying, SARKAR D K, CHEN X G. Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties [J]. Applied Surface Science, 2015, 356: 1012–1024. DOI: https://doi.org/10.1016/j.apsusc.2015.08.166.

    Article  ADS  CAS  Google Scholar 

  23. GUO Fu-qiang, DUAN Shu-wei, WU Dong-ting, et al. Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion [J]. Corrosion Science, 2021, 182: 109262. DOI: https://doi.org/10.1016/j.corsci.2021.109262.

    Article  CAS  Google Scholar 

  24. LAN Xiao, ZHANG Bin-bin, WANG Jia, et al. Hydrothermally structured superhydrophobic surface with superior anti-corrosion, anti-bacterial and anti-icing behaviors [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126820. DOI: https://doi.org/10.1016/j.colsurfa.2021.126820.

    Article  CAS  Google Scholar 

  25. VERRO V, DI FRANCO F, ZAFFORA A, et al. Enhancing corrosion resistance of anodized AA7075 alloys by electrodeposition of superhydrophobic coatings [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132040. DOI: https://doi.org/10.1016/j.colsurfa.2023.132040.

    Article  CAS  Google Scholar 

  26. GONG Ao, ZHENG Yong, YANG Zheng-kai, et al. Spray fabrication of superhydrophobic coating on aluminum alloy for corrosion mitigation [J]. Materials Today Communications, 2021, 26: 101828. DOI: https://doi.org/10.1016/j.mtcomm.2020.101828.

    Article  CAS  Google Scholar 

  27. XIN Guo-qiang, WU Cong-yi, LIU Wei-nan, et al. Anticorrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing [J]. Journal of Alloys and Compounds, 2021, 881: 160649. DOI: https://doi.org/10.1016/j.jallcom.2021.160649.

    Article  CAS  Google Scholar 

  28. ZHANG Bin-bin, XU Wei-chen, ZHU Qing-jun, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection [J]. Corrosion Science, 2019, 158: 108083. DOI: https://doi.org/10.1016/j.corsci.2019.06.031.

    Article  CAS  Google Scholar 

  29. BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S, et al. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability [J]. Arabian Journal of Chemistry, 2020, 13(1): 1763–1802. DOI: https://doi.org/10.1016/j.arabjc.2018.01.013.

    Article  CAS  Google Scholar 

  30. VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces [J]. Advanced Materials, 2011, 23(5): 673–678. DOI: https://doi.org/10.1002/adma.201003129.

    Article  CAS  PubMed  Google Scholar 

  31. ZHANG Jun-ping, GAO Zi-qian, LI Ling-xiao, et al. Waterborne nonfluorinated superhydrophobic coatings with exceptional mechanical durability based on natural nanorods [J]. Advanced Materials Interfaces, 2017, 4(19): 1700723. DOI: https://doi.org/10.1002/admi.201700723.

    Article  Google Scholar 

  32. ZHANG Bin-bin, DUAN Ji-zhou, HUANG Yan-liang, et al. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. Journal of Materials Science & Technology, 2021, 71: 1–11. DOI: https://doi.org/10.1016/j.jmst.2020.09.011.

    Article  Google Scholar 

  33. QIAO Meng-ying, JI Guo-jun, LU Yao, et al. Sustainable corrosion-resistant superhydrophobic composite coating with strengthened robustness [J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 215–227. DOI: https://doi.org/10.1016/j.jiec.2023.01.025.

    Article  CAS  Google Scholar 

  34. XUE Feng-xin, SHI Xue-ting, BAI Wen-xia, et al. Enhanced durability and versatile superhydrophobic coatings via facile one-step spraying technique [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128411. DOI: https://doi.org/10.1016/j.colsurfa.2022.128411.

    Article  CAS  Google Scholar 

  35. WANG De-hui, SUN Qiang-qiang, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces [J]. Nature, 2020, 582: 55–59. DOI: https://doi.org/10.1038/s41586-020-2331-8.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. WANG Peng, ZHAO Hui, ZHENG Bo-yuan, et al. A superrobust armoured superhydrophobic surface with excellent anti-icing ability [J]. Journal of Bionic Engineering, 2023, 20(5): 1891–1904. DOI: https://doi.org/10.1007/s42235-023-00381-7.

    Article  Google Scholar 

  37. WEI Jin-fei, LI Bu-cheng, TIAN Ning, et al. Scalable robust superamphiphobic coatings enabled by self-similar structure, protective micro-skeleton, and adhesive for practical anti-icing of high-voltage transmission tower [J]. Advanced Functional Materials, 2022, 32(43): 2206014. DOI: https://doi.org/10.1002/adfm.202206014.

    Article  CAS  Google Scholar 

  38. LU Zhen-zhen, ZHANG Ying-xuan, GE Qian-qian, et al. Robust and applicable superhydrophobic coatings with multilayer self-similar structure and self-healing properties [J]. Journal of Materials Processing Technology, 2024, 324: 118264. DOI: https://doi.org/10.1016/j.jmatprotec.2023.118264.

    Article  CAS  Google Scholar 

  39. ZHANG Hong-liang, GUO Zhi-guang. Recent advances in self-healing superhydrophobic coatings [J]. Nano Today, 2023, 51: 101933. DOI: https://doi.org/10.1016/j.nantod.2023.101933.

    Article  CAS  Google Scholar 

  40. XUE Shuai-ya, LI Bing-feng, MU Peng, et al. Designing attapulgite-based self-healing superhydrophobic coatings for efficient corrosion protection of magnesium alloys [J]. Progress in Organic Coatings, 2022, 170: 106966. DOI: https://doi.org/10.1016/j.porgcoat.2022.106966.

    Article  CAS  Google Scholar 

  41. ZHAO Ya-mei, HUO Meng-dan, HUO Jin-hua, et al. Preparation of silica-epoxy superhydrophobic coating with mechanical stability and multifunctional performance via one-step approach [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129957. DOI: https://doi.org/10.1016/j.colsurfa.2022.129957.

    Article  CAS  Google Scholar 

  42. WU Jia-yue, ZHAO Xing-wang, TANG Chun-yan, et al. One-step dipping method to prepare inorganic-organic composite superhydrophobic coating for durable protection of magnesium alloys [J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135: 104364. DOI: https://doi.org/10.1016/j.jtice.2022.104364.

    Article  CAS  Google Scholar 

  43. CAO Yu-zhu, CHEN Chen, LU Xin, et al. Bio-based polybenzoxazine superhydrophobic coating with active corrosion resistance for carbon steel protection [J]. Surface and Coatings Technology, 2021, 405: 126569. DOI: https://doi.org/10.1016/j.surfcoat.2020.126569.

    Article  CAS  Google Scholar 

  44. ZHANG Meng, LI Cheng, WANG Xiao, et al. Ultrahigh anticorrosion performance of polymer-based coating filled with a novel micro network nanofiller [J]. Corrosion Science, 2021, 190: 109685. DOI: https://doi.org/10.1016/j.corsci.2021.109685.

    Article  CAS  Google Scholar 

  45. ZHOU Ya-ya, MA Yi-bing, SUN You-yi, et al. Robust superhydrophobic surface based on multiple hybrid coatings for application in corrosion protection [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6512–6526. DOI: https://doi.org/10.1021/acsami.8b19663.

    Article  CAS  Google Scholar 

  46. ZHANG Yuan-mi, LI Ning, LING Ning, et al. Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating [J]. Chemical Engineering Journal, 2022, 449: 137778. DOI: https://doi.org/10.1016/j.cej.2022.137778.

    Article  CAS  Google Scholar 

  47. NAYAK S R, MOHANA K N S, HEGDE M B, et al. Functionalized multi-walled carbon nanotube/polyindole incorporated epoxy: An effective anti-corrosion coating material for mild steel [J]. Journal of Alloys and Compounds, 2021, 856: 158057. DOI: https://doi.org/10.1016/j.jallcom.2020.158057.

    Article  CAS  Google Scholar 

  48. RAJITHA K, MOHANA K N S, MOHANAN A, et al. Evaluation of anti-corrosion performance of modified gelatin-graphene oxide nanocomposite dispersed in epoxy coating on mild steel in saline media [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587: 124341. DOI: https://doi.org/10.1016/j.colsurfa.2019.124341.

    Article  CAS  Google Scholar 

  49. BOUKERCHE S, FERKOUS H, DELIMI A, et al. Anticorrosion performance of dehydroacetic acid thiosemicarbazone on XC38 carbon steel in an acidic medium [J]. Arabian Journal of Chemistry, 2023, 16(9): 105061. DOI: https://doi.org/10.1016/j.arabjc.2023.105061.

    Article  CAS  Google Scholar 

  50. LIU Xu, ZHAN Tian-rong, ZHANG Bin-bin. Attapulgite-based superhydrophobic coating on aluminum alloy substrate with self-cleaning, anti-corrosion and robustness [J]. Journal of Industrial and Engineering Chemistry, 2024, 130: 357–367. DOI: https://doi.org/10.1016/j.jiec.2023.09.039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Li-xia provided data duration, formal analysis, methodology, software, writing-original draft of manuscript. LI Hong-yan provided writing-review & editing of the manuscript. ZHOU Kun provided methodology, software of the manuscript. LIU Hai-xing provided methodology, software of the manuscript. WANG Jian provided writing-review & editing of the manuscript. ZHANG Bin-bin provided conceptualization, funding acquisition, supervision, validation, writing-original draft, writing-review & editing of the manuscript.

Corresponding author

Correspondence to Bin-bin Zhang  (张斌斌).

Ethics declarations

ZHAO Li-xia, LI Hong-yan, ZHOU Kun, LIU Hai-xing, WANG Jian, and ZHANG Bin-bin declare that they have no conflict of interest.

Additional information

Foundation item: Projects(ZR2022YQ35, ZR2021LFG004) supported by the Shandong Provincial Natural Science Foundation, China; Project(2021207) supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Lx., Li, Hy., Zhou, K. et al. Enhanced mechanical stability and corrosion resistance of superhydrophobic coating reinforced with inorganic binder. J. Cent. South Univ. (2024). https://doi.org/10.1007/s11771-024-5577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11771-024-5577-8

Key words

关键词

Navigation