Skip to main content
Log in

Strength and failure characteristics of coal measures mudstone specimens containing a prefabricated flaw under true triaxial tests

真三轴应力状态下含预制裂隙煤系泥岩强度与破坏特征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, a series of coal measures mudstone specimens containing a prefabricated flaw were subjected to true triaxial test (TTT), namely, specimens of the intermediate principal stress (σ2) parallel to prefabricated flaw (TTT-Flaw-2) and specimens of the minimum principal stress (σ3) parallel to prefabricated flaw (TTT-Flaw-3). The main objective of this study was to investigate the effects of the loading direction of σ2 and the position of prefabricated flaw on the strength and failure modes of specimens. The results showed that the peak strength of intact and flawed specimens first increased and then decreased with increasing σ2, which could be fitted by the Mogi-Coulomb criterion. Under the same loading stresses, the strength of intact specimen was larger than that of flawed specimens, and specimens TTT-Flaw-2 had the lowest strength. The X-ray computerized tomography scanning results revealed that fractures were not always observed to form along the prefabricated flaw tips but were distributed randomly inside the specimen under conventional triaxial test conditions. Under TTT conditions, anti-wing cracks initiated from the vicinity of the prefabricated flaw tip and were observed in σ2-drrection for specimens TTT-Flaw-2. While for specimens TTT-Flaw-3, shear cracks appeared in σ2-direction, and few anti-wing cracks were observed in σ3-direction.

摘要

对一系列含有预制缺陷的煤系泥岩试样进行了真三轴试验(TTT), 即中间主应力(σ2)平行于预制 缺陷的试样(TTT-Flaw-2)和最小主应力平行于预制缺陷的试样(σ3)(TTT-Flaw-3), 研究σ2 加载方向和预 制缺陷的位置对试样强度和破坏模式的影响。结果表明, 完整试样和含预制缺陷试样的峰值强度随σ2 的增加先增大后减小, 符合Mogi-Coulomb 准则。在相同的应力条件下, 符合Mogi-Coulomb 准则。在相同的应力条件下, 且TTT-Flaw-2 试样的强度最低。CT 扫描结果显示, 在常规三轴试验条件下, 含预制缺陷试样中的裂纹并不总是沿着预制缺陷尖端形成, 而是随机分布在试样内部; 在TTT-Flaw-2 试样中, 反翼型裂纹从预制缺陷尖端附近开始形成, 最终主要分布在σ2 加载方向上; 而在TTT-Flaw-3 试样中, 在σ2 加载方向上出现剪切裂纹, 而在σ3 加载方向上几乎没有观察到反翼型裂纹。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. XIE He-ping, JU Yang, GAO Feng, et al. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources [J]. Tunnelling and Underground Space Technology, 2017, 67: 68–70. DOI: https://doi.org/10.1016/j.tust.2017.04.021.

    Article  Google Scholar 

  2. PERRAS M A, WANNENMACHER H, DIEDERICHS M S. Underground excavation behaviour of the queenston formation: tunnel back analysis for application to shaft damage dimension prediction [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1647–1671. DOI: https://doi.org/10.1007/s00603-014-0656-z.

    Article  ADS  Google Scholar 

  3. CHARLET L A E P, WERSIN P, GILBERT B. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue [J]. Advances in Water Resources, 2017, 106: 39–59. DOI: https://doi.org/10.1016/j.advwatres.2017.03.019.

    Article  CAS  ADS  Google Scholar 

  4. LIU Jia, XUE Yi, FU Yong, et al. Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model [J]. Energy, 2023, 263: 126090. DOI: https://doi.org/10.1016/j.energy.2022.126090.

    Article  CAS  Google Scholar 

  5. TIAN Jian-wei, LIU Ji-shan, ELSWORTH D, et al. Linking fractal theory to a fully coupled coal deformation and two-phase flow multiphysics: The role of fractal dimensions [J]. Energy & Fuels, 2022, 36(20): 12591–12605. DOI: https://doi.org/10.1021/acs.energyfuels.2c02857.

    Article  CAS  Google Scholar 

  6. VISHAL V, RANJITH P G, SINGH T N. CO2 permeability of Indian bituminous coals: Implications for carbon sequestration [J]. International Journal of Coal Geology, 2013, 105: 36–47. DOI: https://doi.org/10.1016/j.coal.2012.11.003.

    Article  CAS  Google Scholar 

  7. JING Y, RABBANI A, ARMSTRONG R T, et al. An image-based coal network model for simulating hydro-mechanical gas flow in coal: An application to carbon dioxide geosequestration [J]. Journal of Cleaner Production, 2022, 379. DOI: https://doi.org/10.1016/j.jclepro.2022.134647.

  8. CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001.

    Article  Google Scholar 

  9. BÉSUELLE P, DESRUES J, RAYNAUD S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(8): 1223–1237. DOI: https://doi.org/10.1016/S1365-1609(00)00057-5.

    Article  Google Scholar 

  10. VISHAL V, RANJITH P G, SINGH T N. An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission [J]. Journal of Natural Gas Science and Engineering, 2015, 22: 428–436. DOI: https://doi.org/10.1016/j.jngse.2014.12.020.

    Article  CAS  Google Scholar 

  11. HAERI H, SHAHRIAR K, MARJI M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67(4): 20–28. DOI: https://doi.org/10.1016/j.ijrmms.2014.01.008.

    Article  Google Scholar 

  12. BI Jing, ZHOU Xiao-ping, QIAN Qi-hu. The 3D Numerical simulation for the propagation process of multiple preexisting flaws in rock-like materials subjected to biaxial compressive loads [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1611–1627. DOI: https://doi.org/10.1007/s00603-015-0867-y.

    Article  ADS  Google Scholar 

  13. CHEN Miao, YANG Sheng-qi, RANJITH P G, et al. Cracking behavior of rock containing non-persistent joints with various joints inclinations [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 16. DOI: https://doi.org/10.1016/j.tafmec.2020.102701.

    Article  Google Scholar 

  14. ANDREEV G E. Brittle failure of rock materials: test results and constitutive models [M]. Rotterdam: A. A. Balkema, 1995.

    Google Scholar 

  15. WONG T W, BAUD P. The brittle-ductile transition in porous rock: A review [J]. Journal of Structural Geology, 2012, 44: 25–53. DOI: https://doi.org/10.1016/j.jsg.2012.07.010.

    Article  ADS  Google Scholar 

  16. SAKSALA T, IBRAHIMBEGOVIC A. Anisotropic viscodamage-viscoplastic consistency constitutive model with a parabolic cap for rocks with brittle and ductile behaviour [J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 70(9): 460–473. DOI: https://doi.org/10.1016/j.ijrmms.2014.05.019.

    Article  Google Scholar 

  17. MA Xiao-dong. Failure characteristics of compactive, porous sandstones subjected to true triaxial stresses [D]. Madison, USA: The University of Wisconsin-Madison, 2014.

    Google Scholar 

  18. LU Yin-long, WANG Lian-guo, ELSWORTH D. Uniaxial strength and failure in sandstone containing a pre-existing 3-D surface flaw [J]. International Journal of Fracture, 2015, 194(1): 59–79. DOI: https://doi.org/10.1007/s10704-015-0032-3.

    Article  Google Scholar 

  19. MCGARR A, GAY N C. State of stress in the Earth’s crust [J]. Annual Review of Earth & Planetary Sciences, 2003, 6(1): 405–436. DOI: https://doi.org/10.1146/annurev.ea.06.050178.002201.

    Article  ADS  Google Scholar 

  20. BRACE W F, KOHLSTEDT D L. Limits on lithospheric stress imposed by laboratory experiments [J]. Journal of Geophysical Research Atmospheres B, 1980, 85(11): 6248–6252. DOI: https://doi.org/10.1029/JB085iB11p06248.

    Article  ADS  Google Scholar 

  21. WANG Zhong-wei, LIU Quan-sheng. Failure criterion for soft rocks considering intermediate principal stress [J]. International Journal of Mining Science and Technology, 2021, 31(4): 565–575. DOI: https://doi.org/10.1016/j.ijmst.2021.05.005.

    Article  Google Scholar 

  22. MOGI K. Flow and fracture of rocks under general triaxial compression [J]. Applied Mathematics and Mechanics, 1981, 6: 635–651. DOI: https://doi.org/10.1007/BF01897637.

    Article  Google Scholar 

  23. HAIMSON B, CHANG Chan-dong. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 285–296. DOI: https://doi.org/10.1016/S1365-1609(99)00106-9.

    Article  Google Scholar 

  24. CHANG Chan-dong, HAIMSON B. True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite [J]. Journal of Geophysical Research Solid Earth B, 2000, 105(8): 18999–19013. DOI: https://doi.org/10.1029/2000JB900184.

    Article  CAS  ADS  Google Scholar 

  25. OKU H, HAIMSON B, SONG Sheng-rong. True triaxial strength and deformability of the siltstone overlying the Chelungpu fault (Chi-Chi earthquake), Taiwan [J]. Geophysical Research Letters, 2007, 34(9): 139–158. DOI: https://doi.org/10.1029/2007GL029601.

    Article  Google Scholar 

  26. HAIMSON B, RUDNICKI J W. The effect of the intermediate principal stress on fault formation and fault angle in siltstone [J]. Journal of Structural Geology, 2010, 32(11): 1701–1711. DOI: https://doi.org/10.1016/j.jsg.2009.08.017.

    Article  ADS  Google Scholar 

  27. LEE H, HAIMSON B C. True triaxial strength, deformability, and brittle failure of granodiorite from the San Andreas Fault observatory at depth [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1199–1207. DOI: https://doi.org/10.1016/j.ijrmms.2011.08.003.

    Article  Google Scholar 

  28. JIANG Jian-qing, FENG Xia-ting, YANG Cheng-xiang, et al. Experimental study on the failure characteristics of granite subjected to weak dynamic disturbance under different σ3 conditions [J]. Rock Mechanics and Rock Engineering, 2021, 54(11): 5577–5590. DOI: https://doi.org/10.1007/s00603-021-02542-8.

    Article  ADS  Google Scholar 

  29. ZHENG Zhi, FENG Xia-ting, ZHANG Xi-wei, et al. Residual strength characteristics of CJPL marble under true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1247–1256. DOI: https://doi.org/10.1007/s00603-018-1659-y.

    Article  ADS  Google Scholar 

  30. FENG Xia-ting, ZHANG Xi-wei, YANG Cheng-xiang, et al. Evaluation and reduction of the end friction effect in true triaxial tests on hard rocks [J]. International Journal of Rock Mechanics & Mining Sciences, 2017: 144–148. DOI: https://doi.org/10.1016/j.ijrmms.2017.04.002.

  31. FENG Xia-Ting, ZHANG Xi-wei, KONG Rui, et al. A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress - strain curves of hard rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1649–1662. DOI: https://doi.org/10.1007/s00603-015-0875-y.

    Article  ADS  Google Scholar 

  32. LIU Yu-bing, LI Ming-hui, YIN Guang-zhi, et al. Permeability evolution of anthracite coal considering true triaxial stress conditions and structural anisotropy [J]. Journal of Natural Gas Science and Engineering, 2018, 52: 492–506. DOI: https://doi.org/10.1016/j.jngse.2018.02.014.

    Article  Google Scholar 

  33. LU Jun, HUANG Gun, GAO Heng, et al. Mechanical properties of layered composite coal-rock subjected to true triaxial stress [J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4117–4138. DOI: https://doi.org/10.1007/s00603-020-02148-6.

    Article  ADS  Google Scholar 

  34. MA Xiao-dong, HAIMSON B. Failure characteristics of two porous sandstones subjected to true triaxial stresses [J]. Journal of Geophysical Research: Solid Earth, 2016, 121: 6477–6498. DOI: https://doi.org/10.1002/2016JB012979.

    Article  ADS  Google Scholar 

  35. ZHAO Jun, FENG Xia-ting, ZHANG Xi-wei, et al. Brittleductile transition and failure mechanism of Jinping marble under true triaxial compression [J]. Engineering Geology, 2018, 232: 160–170. DOI: https://doi.org/10.1016/j.enggeo.2017.11.008.

    Article  Google Scholar 

  36. VACHAPARAMPIL A, GHASSEMI A. Failure characteristics of three shales under true-triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 151–159. DOI: https://doi.org/10.1016/j.ijrmms.2017.10.018.

    Article  Google Scholar 

  37. LU Wen-bin, ZHU Zhen-de, HE Yan-xin, et al. Strength characteristics and failure mechanism of a columnar jointed rock mass under uniaxial, triaxial, and true triaxial confinement [J]. Rock Mechanics and Rock Engineering, 2021, 54(5): 2425–2439. DOI: https://doi.org/10.1007/s00603-021-02400-7.

    Article  ADS  Google Scholar 

  38. CHANG Xu, ZHANG Xu, DANG Fa-ning, et al. Failure behavior of sandstone specimens containing a single flaw under true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2111–2127. DOI: https://doi.org/10.1007/s00603-021-02761-z.

    Article  ADS  Google Scholar 

  39. GAO Yao-hui, FENG Xia-ting, WANG Zhao-feng, et al. Strength and failure characteristics of jointed marble under true triaxial compression [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 891–905. DOI: https://doi.org/10.1007/s10064-019-01610-2.

    Article  CAS  Google Scholar 

  40. LU Yin-long, PU Hai, WANG Lian-guo, et al. Fracture evolution in mudstone specimens containing a pre-existing flaw under true triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104594. DOI: https://doi.org/10.1016/j.ijrmms.2020.104594.

    Article  Google Scholar 

  41. LU Yin-long, LI Wen-shuai, WANG Lian-guo, et al. Damage evolution and failure behavior of sandstone under true triaxial compression [J]. Geotechnical Testing Journal, 2019, 42(3): 610–637. DOI: https://doi.org/10.1520/GTJ20170295.

    Article  Google Scholar 

  42. MA Xiao-dong, RUDNICKI J W, HAIMSON B. The application of a Matsuoka-Nakai-Lade-Duncan failure criterion to two porous sandstones [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 92: 9–18. DOI: https://doi.org/10.1016/j.ijrmms.2016.12.004.

    Article  Google Scholar 

  43. AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431–439. DOI: https://doi.org/10.1016/j.ijrmms.2004.11.004.

    Article  Google Scholar 

  44. CHANG Chan-dong, HAIMSON B. A failure criterion for rocks based on true triaxial testing [J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 1007–1010. DOI: https://doi.org/10.1007/s00603-012-0280-8.

    Article  ADS  Google Scholar 

  45. YANG Sheng-qi, RANJITH P G, GUI Yi-lin. Experimental study of mechanical behavior and X-Ray micro CT observations of sandstone under conventional triaxial compression [J]. Geotechnical Testing Journal, 2015, 38(2): 20140209. DOI: https://doi.org/10.1520/GTJ20140209.

    Article  Google Scholar 

  46. LI Zhao-lin, WANG Lian-guo, JIANG Chong-yang, et al. Three-dimensional fracture evolution patterns of rocks under true triaxial conditions based on real-time CT scanning [J]. Journal of China Coal Society, 2021, 46(3): 937–949. (in Chinese)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LI Wen-shuai and JIANG Bang-you provided the concept. LI Wen-shuai and LI Zhao-lin carried out the experiment and wrote the draft of the manuscript. YANG Xu-xu analyzed the experimental data. WANG Lian-guo reviewed the manuscript. LI Wen-shuai and LI Zhao-lin replied to reviewers’ comments and revised the manuscript.

Corresponding authors

Correspondence to Bang-you Jiang  (蒋邦友) or Zhao-lin Li  (李兆霖).

Ethics declarations

LI Wen-shuai, JIANG Bang-you, LI Zhao-lin, WANG Lian-guo and YANG Xu-xu declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52204144, 52004144) supported by the Natural Science Foundation of China; Project(ZR2022QE232) supported by the Natural Science Foundation of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ws., Jiang, By., Li, Zl. et al. Strength and failure characteristics of coal measures mudstone specimens containing a prefabricated flaw under true triaxial tests. J. Cent. South Univ. 31, 196–209 (2024). https://doi.org/10.1007/s11771-024-5563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5563-1

Key words

关键词

Navigation