Skip to main content
Log in

The 3D Numerical Simulation for the Propagation Process of Multiple Pre-existing Flaws in Rock-Like Materials Subjected to Biaxial Compressive Loads

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

General particle dynamics (GPD), which is a novel meshless numerical method, is proposed to simulate the initiation, propagation and coalescence of 3D pre-existing penetrating and embedded flaws under biaxial compression. The failure process for rock-like materials subjected to biaxial compressive loads is investigated using the numerical code GPD3D. Moreover, internal crack evolution processes are successfully simulated using GPD3D. With increasing lateral stress, the secondary cracks keep growing in the samples, while the growth of the wing cracks is restrained. The samples are mainly split into fragments in a shear failure mode under biaxial compression, which is different from the splitting failure of the samples subjected to uniaxial compression. For specimens with macroscopic pre-existing flaws, the simulated types of cracks, the simulated coalescence types and the simulated failure modes are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D :

A disturbance coefficient

E :

Young’s modulus

f :

Interaction factor

\(D_{1}\) :

Damage factor

G :

Shear modulus

U :

Undamaged particles

D a :

Damaged particles

h :

Smoothing length

μ :

Poisson ratio

ρ :

Real time mass density

ρ 0 :

The initial density

k :

The modulus of volume elasticity

\(v_{i}\) :

Particle velocity at ith particle

\(\dot{R}^{\alpha \beta }\) :

Rotation rate

\(x^{\alpha }\) :

Spatial coordinate (X)

\(\dot{\varepsilon }^{\alpha \beta }\) :

Strain rate

c i :

The elastic wave speed

\(W_{ij,\,\beta }\) :

The kernel gradient with smoothing length h

\({{\text{d}} \mathord{\left/ {\vphantom {{\text{d}} {{\text{d}}t}}} \right. \kern-0pt} {{\text{d}}t}}\) :

The time derivative

m :

The value of \(m_{s}\) (in the Hoek–Brown criterion)

\(\sigma_{c}\) :

Uniaxial compressive strength

\(v^{\alpha }\) :

Velocity vector (V)

\(c_{i}\) :

The elastic wave speed at the ith particle

\(\sigma^{\alpha \beta }\) :

Cauchy stress tensor (\(\sigma\))

\(\tau^{\alpha \beta }\) :

Material frame in different objective rate

\(\dot{\tau }^{\alpha \beta }\) :

Stress rate

\(\alpha ,\,\,\beta\) :

Indices for the three spatial directions

a :

The half-length of flaw

c :

The non-overlapping length

References

  • Aubry R, Idelsohn SR, Oñate E (2005) Particle finite element method in fluid mechanics including thermal convection–diffusion. Comput Struct 83:1459–1475

    Article  Google Scholar 

  • Bardenhagen S, Guilkey J, Roessig K, Brackbill J, Witzel W, Foster J (2001) An improved contact algorithm for the material point method and application to stress propagation in granular material. Comp Model Eng 2:509–522

    Google Scholar 

  • Beiseel SR, Gerlach CA, Johnson GR (2006) Hypervelocity impact computations with finite elements and meshfree particles. Int J Impact Eng 33:80–90

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252

    Article  Google Scholar 

  • Bouchard PO, Baya F, Chastela Y, Tovena I (2000) Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng 189:723–742

    Article  Google Scholar 

  • Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252

    Article  Google Scholar 

  • Chen CS, Pan E, Amadei B (1998) Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int J Rock Mech Min 35:195–218

    Article  Google Scholar 

  • Chen JS, Yoon S, Wang HP, Liu WK (2000) An improved reproducing kernle particle method for nearly incompressibles hyperelastic solids. Comput Methods Appl Mech Eng 181:117–145

    Article  Google Scholar 

  • Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  • Donze FV, Richefeu V, Magnier SA (2009) Advances in discrete element method applied to soil rock and concrete mechanics. Electron J Geotech Eng 8:1–44

    Google Scholar 

  • Guo Y, Nairn J (2006) Three-dimensional dynamic fracture analysis using the material point method. Comp Model Eng 16:141–155

    Google Scholar 

  • Healy D, Jones RR, Holdsworth RE (2006a) New insights into the development of brittle shear fractures from a 3-D numerical model of microcrack interaction. Earth Planet Sci Lett 249:14–28

    Article  Google Scholar 

  • Healy D, Jones RR, Holdsworth RE (2006b) Three-dimensional brittle shear fracturing by tensile crack interaction. Nature 439:64–67

    Article  Google Scholar 

  • Hoek E (1983) Strength of jointed rock masses. Geotechnique 33:187–223

    Article  Google Scholar 

  • Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Min 27:227–229

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron 106(GT9):1013–1036

    Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimate the rock mass strength. Int J Rock Mech Min 34:1165–1186

    Article  Google Scholar 

  • Huang ML, Wong RHC (2007) Experimental study on propagation and coalescence mechanisms of 3D surface cracks. Chin J Rock Mech Eng 26:1794–1799

    Google Scholar 

  • Lauterbach B, Gross D (1998) Crack growth in brittle solids under compression. Mech Mater 29:81–92

    Article  Google Scholar 

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48:979–999

    Article  Google Scholar 

  • Liang ZZ, Xing H, Wang SY, Williams DJ, Tang CA (2012) A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech 45:19–33

    Article  Google Scholar 

  • Libersky LD, Petschek AG (1991) Smoothed particle hydrodynamics with strength of materials. In: Trease H, Friits J, Crowley W (eds) Proceedings of the Next Free Lagrange Conference, vol 395. Springer, New York, pp 248–257

    Google Scholar 

  • Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response. J Comput Phys 109:67–75

    Article  Google Scholar 

  • Liu HY, Kou SQ, Lindqvist PAPA, Tang CA (2004) Numerical simulation of shear fracture (mode II) in heterogeneous brittle rock. Int J Rock Mech Min 41:14–19

    Article  Google Scholar 

  • Mehra V, Chaturvedi S (2006) High velocity impact of metal sphere on thin metallic plates: a comparative smooth particle hydrodynamics study. J Comput Phys 212:318–337

    Article  Google Scholar 

  • Ning YJ, An XM, Ma GW (2011a) Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min 48:964–975

    Article  Google Scholar 

  • Ning Y, Yang J, An X, Ma G (2011b) Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput Geotech 38:40–49

    Article  Google Scholar 

  • Paluszny A, Matthai SK (2009) Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media. Int J Solids Struct 46:3383–3397

    Article  Google Scholar 

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min 46:819–829

    Article  Google Scholar 

  • Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77:2727–2748

    Article  Google Scholar 

  • Pin FD, Idelsohn SR, Oñate E, Aubry R (2007) The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid–object interactions. Comput Fluids 36:27–38

    Article  Google Scholar 

  • Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics some recent improvements and applications. Comput Methods Appl Mech Eng 138:375–408

    Article  Google Scholar 

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min 39:229–241

    Article  Google Scholar 

  • Schreyer H, Sulsky D, Zhou S (2002) Modeling delamination as a strong discontinuity with the material point method. Comput Methods Appl Mech Eng 191:2483–2507

    Article  Google Scholar 

  • Shaw A, Reid SR (2009) Applications of SPH with the acceleration correction algorithm in structural impact computations. Curr Sci 97(8):1177–1186

    Google Scholar 

  • Shi GH (1991) Manifold method of material analysis. Transactions of the 9th Army Conference on Application of Mathematics and Computing, Minneapolis, USA, pp 57–76

  • Shi GH, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modeling. Int J Numer Anal Methods Geomech 13:359–380

    Article  Google Scholar 

  • Strouboulis T, Babuska I, Copps KL (2000a) The design and analysis of the Generalized Finite Element Method. Comput Methods Appl Mech Eng 181:43–69

    Article  Google Scholar 

  • Strouboulis T, Copps K, Babuska I (2000b) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Anal Methods Geomech 47:1401–1417

    Article  Google Scholar 

  • Sulsky D, Chen Z, Schreyer H (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  Google Scholar 

  • Sulsky D, Zhou S, Schreyer H (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252

    Article  Google Scholar 

  • Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. Int J Rock Mech Min 38:925–939

    Article  Google Scholar 

  • Tsay RJ, Chiou YJ, Chuang WL (1999) Crack growth prediction by manifold method. J Eng Mech 125:884–990

    Article  Google Scholar 

  • Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Numer Anal Methods Geomech 32:1405–1415

    Article  Google Scholar 

  • Wang YC, Mora P (2008) Modeling wing crack extension: implications for the Ingredients of Discrete Element Model. Pure Appl Geophys 16:609–620

    Article  Google Scholar 

  • Wang SY, Sloan SW, Sheng DC et al (2014) Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. Int J Solids Struct 51:1132–1148

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Wong RHC, Chau KT, Tang CA, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach. Int J Rock Mech Min 38:909–924

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and carrara marble: part 2—microscopic observations and interpretation. Rock Mech Rock Eng 42:513–545

    Article  Google Scholar 

  • Wu ZJ, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53

    Article  Google Scholar 

  • Yang SQ, Jing HW, Wang SY (2012a) Experimental study on the strength, deformability, failure behaviour and spatial acoustic emission distribution of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606

    Article  Google Scholar 

  • Yang SQ, Yang DS, Jing HW, Li YH, Wang SY (2012b) An experimental study of the fracture coalescence behaviour of brittle sandstone samples containing three fissures. Rock Mech Rock Eng 45:563–582

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889

    Article  Google Scholar 

  • York A, Sulsky D, Schreyer H (2000) Fluid-membrane interaction based on the material point method. Int J Numer Methods Eng 48:901–924

    Article  Google Scholar 

  • Yu MH, Zan YW, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min Sci 39:975–989

    Article  Google Scholar 

  • Zhang HH, Li LX, An XM, Ma GW (2010) Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng Anal Boundary Elem 34:41–50

    Article  Google Scholar 

  • Zhang XP, Wong LNY (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45:711–737

    Google Scholar 

  • Zhou XP, Cheng H, Feng YF (2014) An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression. Rock Mech Rock Eng 47:1961–1986

    Article  Google Scholar 

  • Zhou XP, Bi J, Qian QH (2015a) Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech Rock Eng 48(3):1097–1114

    Article  Google Scholar 

  • Zhou XP, Zhao Y, Qian QH (2015b) A novel meshless numerical method for modeling progressive failure processes of slopes. Eng Geol 192:139–153

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by project 973 (Grant No. 2014CB046903), the National Natural Science Foundation of China (Nos. 51325903 and 51279218), and the Natural Science Foundation Project of CQ CSTC (Nos. CSTC, cstc2013kjrcljrccj0001 and cstc2013jcyjys30002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. P. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Zhou, X.P. & Qian, Q.H. The 3D Numerical Simulation for the Propagation Process of Multiple Pre-existing Flaws in Rock-Like Materials Subjected to Biaxial Compressive Loads. Rock Mech Rock Eng 49, 1611–1627 (2016). https://doi.org/10.1007/s00603-015-0867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0867-y

Keywords

Navigation