Skip to main content
Log in

Residual Strength Characteristics of CJPL Marble Under True Triaxial Compression

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci 42:431–439

    Article  Google Scholar 

  • Barla G, Barla M, Debernardi D (2010) New triaxial apparatus for rocks. Rock Mech Rock Eng 43:225–230

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007a) Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 44:247–265

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007b) Peak and residual strengths of jointed rock masses and their determination for engineering design. In: Proceedings of the 1st Canada-US rock mechanics symposium, Vancouver, Canada, pp 259–267

  • Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 36:281–289

    Google Scholar 

  • Fang Z, Harrison JP (2001) A mechanical degradation index for rock. Int J Rock Mech Min Sci 38:1193–1199

    Article  Google Scholar 

  • Feng XT, Zhang XW, Kong R, Wang G (2016) A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mech Rock Eng 49:1649–1662

    Article  Google Scholar 

  • Feng XT et al (2018) In situ observation of rock spalling in the deep tunnels of the China Jinping underground laboratory (2400 m Depth). Rock Mech Rock Eng 51:1193–1213

    Article  Google Scholar 

  • Gao F, Kang H (2017) Experimental study on the residual strength of coal under low confinement. Rock Mech Rock Eng 50:285–296

    Article  Google Scholar 

  • Hashiba K, Okubo S, Fukui K (2006) A new testing method for investigating the loading rate dependency of peak and residual rock strength. Int J Rock Mech Min Sci 43:894–904

    Article  Google Scholar 

  • He MC, Zhao F, Cai M, Du S (2015) A novel experimental technique to simulate pillar burst in laboratory. Rock Mech Rock Eng 48:1833–1848

    Article  Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam

    Google Scholar 

  • Hudson JA (1989) Rock mechanics principles in engineering practice. Butterworth-Heinemann, London

    Google Scholar 

  • Hudson JA, Crouch SL, Fairhurst C (1972) Soft, stiff and servo-controlled testing machines: a review with reference to rock failure. Eng Geol 6:155–189

    Article  Google Scholar 

  • Joseph TG (2000) Estimation of the post-failure stiffness of rock. PhD Thesis. Alberta, Canada: University of Alberta

  • Kaiser PK (2016) Underground rock engineering to match the rock’s behaviour. In: Proceedings of the 50th US Rock Mechanics / Geomechanics Symposium, Houston, Texas, USA. https://www.mirarco.org/wp-content/uploads/mirarco_pkk/MTS-Kaiser-ARMA-160526f.pdf

  • Kong R, Feng XT, Zhang XW, Yang CX (2018) Study on crack initiation and damage stress in sandstone under true triaxial compression. Int J Rock Mech Min Sci 106:117–123

    Article  Google Scholar 

  • Labuz JF, Dai ST (2000) Residual strength and fracture energy from plane-strain testing. J Geotech Geoenviron Eng 126:882–889

    Article  Google Scholar 

  • Li X, Feng F, Li D, Du K, Ranjith PG, Rostami J (2018) Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions. Rock Mech Rock Eng 51:1321–1345

    Article  Google Scholar 

  • Liang Y, Li Q, Gu Y, Zou Q (2017) Experimental study on characteristics of post-peak residual strength and fracture surface of shale under various confining pressures. Chin J Min Saf Eng 34:1179–1185 (in Chinese)

    Google Scholar 

  • Liao JJ, Hsieh HY (1999) Triaxial residual strength of an anisotropic rock. In: Proceedings of 37th US Rock Mechanics Symposium (Vail Rocks 99), VAIL, CO, pp 317–327

  • Ma XD, Haimson BC (2016) Failure characteristics of two porous sandstones subjected to true triaxial stresses. J Geophys Res 121:6477–6498

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76:1255–1269

    Article  Google Scholar 

  • Mogi K (1973) Rock fracture. Annu Rev Earth pl Sci, 1:63–84

    Article  Google Scholar 

  • Peng J, Cai M, Rong G, Yao MD, Jiang QH, Zhou CB (2017) Determination of confinement and plastic strain dependent post-peak strength of intact rocks. Eng Geol 218:187–196

    Article  Google Scholar 

  • Su G et al (2017) True triaxial experimental study of rockbursts induced by ramp and cyclic dynamic disturbances. Rock Mech Rock Eng 51:1027–1045

    Article  Google Scholar 

  • Tiwari G, Latha GM (2017) Reliability analysis of jointed rock slope considering uncertainty in peak and residual strength parameters. Bull Eng Geol Environ 11:1–18

    Google Scholar 

  • Wawersik WR, Brace WF (1971) Post-failure behavior of a granite and diabase. Rock Mech 3(2):61–85

    Article  Google Scholar 

  • Yang SQ, Jing HW, Wang SY (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606

    Article  Google Scholar 

  • Yu W, Xiao LI, Shouding LI, Hou W, Wu YS, Bo Z (2013) A method for determining residual strength parameters of jointed rock masses. Chin J Rock Mech Eng 32:1701–1713 (in Chinese)

    Google Scholar 

  • Zhang CH, Zhao QS, Li H, Sen YE, Yu YJ (2010) Post-peak strain softening mechanical model of rock considering confining pressure effect. Chin J Rock Soil Mech 31:193–197 (in Chinese)

    Google Scholar 

  • Zhao J, Feng XT, Zhang XW, Zhang Y, Zhou YY, Yang CX (2018) Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng Geol 232:160–170

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Programme of China under Grant No. 2017YFC0804203, the 111 Project under Grant No. B17009, the CAS Key Research Programme of Frontier Sciences under Grant no. QYZDJ-SSW-DQC016 and the National Natural Science Foundation of China under Grant no. 51579043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Ting Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Feng, XT., Zhang, X. et al. Residual Strength Characteristics of CJPL Marble Under True Triaxial Compression. Rock Mech Rock Eng 52, 1247–1256 (2019). https://doi.org/10.1007/s00603-018-1659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1659-y

Keywords

Navigation