Skip to main content
Log in

Inversion of self-potential anomalies from regular geometric objects by using whale optimization algorithm

利用鲸鱼优化算法的规则几何物体自然电位反演

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The whale optimization algorithm (WOA) is one of the meta-heuristic algorithms that achieve parameters optimization by simulating the feeding behavior of humpback whales. The WOA can be applied to self-potential (SP) data inversion for regular polarized geometric objects (i.e., sphere, horizontal cylinder, and vertical cylinder), which can assist in exploring subsurface geological objects. The WOA was first applied to perform parameter inversion on three models: the sphere, the vertical cylinder, and the combination of both models. The optimization process of the vertical cylinder model parameters was analyzed, and the convergence behavior of the WOA was discussed. Secondly, laboratory-measured data from three sets of physical models were used for parameters inversion, and a comparison was made with two other optimization algorithms to demonstrate the advantages of the WOA. Finally, the WOA was applied to process a set of field data. The WOA algorithm was employed for the inversion of SP data inversion from numerical experiments, physical experiments, and field examples. The inversion results demonstrate that the proposed WOA inversion has good stability and effectiveness in solving the self-potential inversion problem.

摘要

自然电场法对地下水和地下污染相关的流动电位和氧化还原电位非常敏感, 可以高效经济的实现对地下水和污染物的探测和定位. 鲸鱼优化算法是一种元启发式算法, 通过模拟座头鲸的捕食行为实现参数优化. 将鲸鱼算法应用于规则极化几何体(即球体、 水平圆柱体和垂直圆柱体)的自然电场数据反演, 可以快速实现对地下目标体的精细勘探. 首先, 利用鲸鱼算法对球体、 垂直圆柱体以及组合模型进行了参数反演测试, 并对垂直柱体模型参数的优化过程进行了统计分析, 讨论了鲸鱼算法的收敛性. 然后, 利用 3 组实验室观测的物理模型数据进行进一步的参数反演测试, 与另外 2 种优化算法进行对比分析表明鲸鱼算法具有明显的优势. 最后, 将鲸鱼算法用于某场地实测自然电场数据的处理解释, 实测数据反演结果得到了开挖验证, 说明反演算法的实用性较好. 反演测试还表明, 基于鲸鱼优化算法的自然电场反演具有一定的抗噪声能力, 在噪声条件下还能保持良好的收敛性. 该方法可以实现对地下目标体快速精确反演定位, 具有良好的实用性, 可以广泛应用于地下水和地下污染调查.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. MINSLEY B J, SOGADE J, MORGAN F D. Three-dimensional self-potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina [J]. Water Resources Research, 2007, 43(4): W04429. DOI: https://doi.org/10.1029/2005wr003996.

    Article  Google Scholar 

  2. REVIL A, KARAOULIS M, JOHNSON T, et al. Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology [J]. Hydrogeology Journal, 2012, 20(4): 617–658. DOI: https://doi.org/10.1007/s10040-011-0819-x.

    Article  Google Scholar 

  3. EPPELBAUM L V. Review of processing and interpretation of self-potential anomalies: Transfer of methodologies developed in magnetic prospecting [J]. Geosciences, 2021, 11(5): 194. DOI: https://doi.org/10.3390/geosciences11050194.

    Article  Google Scholar 

  4. ZHU Z, TAO C, SHEN J, et al. Self-potential tomography of a deep-sea polymetallic sulfide deposit on southwest Indian ridge [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB019738. DOI: https://doi.org/10.1029/2020jb019738.

    Article  Google Scholar 

  5. BISWAS A, RAO K, BISWAS A. Inversion and uncertainty estimation of self-potential anomalies over a two-dimensional dipping layer/bed: Application to mineral exploration, and archaeological targets [J]. Minerals, 2022, 12(12): 1484. DOI: https://doi.org/10.3390/min12121484.

    Article  Google Scholar 

  6. OLIVETI I, CARDARELLI E. Self-potential data inversion for environmental and hydrogeological investigations [J]. Pure and Applied Geophysics, 2019, 176(8): 3607–3628. DOI: https://doi.org/10.1007/s00024-019-02155-x.

    Article  Google Scholar 

  7. KUKEMILKS K, WAGNER J F. Detection of preferential water flow by electrical resistivity tomography and self-potential method [J]. Applied Sciences, 2021, 11(9): 4224. DOI: https://doi.org/10.3390/app11094224.

    Article  Google Scholar 

  8. SOUEID AHMED A, REVIL A, STECK B, et al. Self-potential signals associated with localized leaks in embankment dams and dikes [J]. Engineering Geology, 2019, 253: 229–239. DOI: https://doi.org/10.1016/j.enggeo.2019.03.019.

    Article  Google Scholar 

  9. GUO You-jun, CUI Yi-an, XIE Jing, et al. Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography [J]. Engineering Geology, 2022, 306: 106750. DOI: https://doi.org/10.1016/j.enggeo.2022.106750.

    Article  Google Scholar 

  10. CUI Yi-an, ZHU Xiao-xiong, WEI Wen-sheng, et al. Dynamic imaging of metallic contamination plume based on self-potential data [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1822–1830. DOI: https://doi.org/10.1016/S1003-6326(17)60205-X.

    Article  Google Scholar 

  11. XIE Jing, CUI Yi-an, ZHANG Li-juan, et al. Numerical modeling of biogeobattery system from microbial degradation of underground organic contaminant [J]. SN Applied Sciences, 2020, 2(2): 1–11. DOI: https://doi.org/10.1007/s42452-020-2008-9.

    Article  Google Scholar 

  12. ZHU Xiao-xiong, CUI Yi-an, LI Xi-yang, et al. Inversion of self-potential anomalies based on particle swarm optimization [J]. Journal of Central South University (Science and Technology), 2015, 46(2): 579–585. DOI: https://doi.org/10.11817/j.issn.1672-7207.2015.02.028. (in Chinese)

    Google Scholar 

  13. BISWAS A. A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones [J]. Ore Geology Reviews, 2017, 91: 21–56. DOI: https://doi.org/10.1016/j.oregeorev.2017.10.024.

    Article  Google Scholar 

  14. XIE Jing, CUI Yi-an, LIU Jian-xin, et al. A review on theory, modeling, inversion, and application of self-potential in marine mineral exploration [J]. Transactions of Nonferrous Metals Society of China, 2023, 33(4): 1214–1232. DOI: https://doi.org/10.1016/S1003-6326(23)66177-1.

    Article  Google Scholar 

  15. RAO D A, RAM BABU H V. Quantitative interpretation of self-potential anomalies due to two-dimensional sheet-like bodies [J]. Geophysics, 1983, 48(12): 1659–1664. DOI: https://doi.org/10.1190/1.1441446.

    Article  Google Scholar 

  16. MURTY B V S, HARICHARAN P. SP anomaly over doable line of poles-interpretation through log curves [J]. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 1984, 93(4): 437–445. DOI: https://doi.org/10.1007/BF02843260.

    Google Scholar 

  17. EPPELBAUM L V. Advanced analysis of self-potential anomalies: Review of case studies from mining, archaeology and environment [M]// Self-Potential Method: Theoretical Modeling and Applications in Geosciences. Cham: Springer, 2021: 203–248https://doi.org/10.1007/978-3-030-79333-3_8.

    Google Scholar 

  18. GÖKTÜRKLER G, BALKAYA. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms [J]. Journal of Geophysics and Engineering, 2012, 9(5): 498–507. DOI: https://doi.org/10.1088/1742-2132/9/5/498.

    Article  Google Scholar 

  19. SINDIRGI P, ÖZYALIN Ç. Estimating the location of a causative body from a self-potential anomaly using 2D and 3D normalized full gradient and Euler deconvolution [J]. Turkish Journal of Earth Sciences, 2019, 28(4): 640–659. DOI: https://doi.org/10.3906/yer-1811-14.

    Article  Google Scholar 

  20. ESSA K S, ABO-EZZ E R. Potential field data interpretation to detect the parameters of buried geometries by applying a nonlinear least-squares approach [J]. Acta Geodaetica et Geophysica, 2021, 56(2): 387–406. DOI: https://doi.org/10.1007/s40328-021-00337-5.

    Article  Google Scholar 

  21. EKINCI Y L, BALKAYA Ç, GÖKTÜRKLER G. Global optimization of near-surface potential field anomalies through metaheuristics [M]// Advances in Modeling and Interpretation in Near Surface Geophysics. Cham: Springer, 2020: 155–188. DOI: https://doi.org/10.1007/978-3-030-28909-6_7.

    Chapter  Google Scholar 

  22. MONTEIRO SANTOS F A. Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization [J]. Computers & Geosciences, 2010, 36(9): 1185–1190. DOI: https://doi.org/10.1016/j.cageo.2010.01.011.

    Article  Google Scholar 

  23. PEKŞEN E, YAS T, KAYMAN A Y, et al. Application of particle swarm optimization on self-potential data [J]. Journal of Applied Geophysics, 2011, 75(2): 305–318. DOI: https://doi.org/10.1016/j.jappgeo.2011.07.013.

    Article  Google Scholar 

  24. LUO Yi-jian, CUI Yi-an, XIE Jing, et al. Inversion of self-potential anomalies caused by simple polarized bodies based on particle swarm optimization [J]. Journal of Central South University, 2021, 28(6): 1797–1812. DOI: https://doi.org/10.1007/s11771-021-4732-8.

    Article  Google Scholar 

  25. LUO Yi-jian, DU Xing-zhong, CUI Yi-an, et al. Inversion of self-potential source based on particle swarm optimization [J]. Geophysical Prospecting, 2023, 71(2): 322–335. DOI: https://doi.org/10.1111/1365-2478.13299.

    Article  Google Scholar 

  26. DURDAĞ D, AYHAN DURDAĞ G, PEKÇEN E. Inversion of self-potential data using generalized regression neural network [J]. Acta Geodaetica et Geophysica, 2022, 57(4): 589–608. DOI: https://doi.org/10.1007/s40328-022-00396-2.

    Article  Google Scholar 

  27. YANG Lin-jin, NAI Chang-xin, LIU Guo-bin, et al. Locating the source of self-potential using few-shot learning [J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106045. DOI: https://doi.org/10.1016/j.engappai.2023.106045.

    Article  Google Scholar 

  28. DI MAIO R, PIEGARI E, RANI P, et al. Quantitative interpretation of multiple self-potential anomaly sources by a global optimization approach [J]. Journal of Applied Geophysics, 2019, 162: 152–163. DOI: https://doi.org/10.1016/j.jappgeo.2019.02.004.

    Article  Google Scholar 

  29. RAO K, JAIN S, BISWAS A. Global optimization for delineation of self-potential anomaly of a 2D inclined plate [J]. Natural Resources Research, 2021, 30(1): 175–189. DOI: https://doi.org/10.1007/s11053-020-09713-4.

    Article  Google Scholar 

  30. ESSA K S, DIAB Z E, MEHANEE S A. Self-potential data inversion utilizing the Bat optimizing algorithm (BOA) with various application cases [J]. Acta Geophysica, 2023, 71(2): 567–586. DOI: https://doi.org/10.1007/s11600-022-00955-9.

    Article  Google Scholar 

  31. MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008.

    Article  Google Scholar 

  32. WANG Jian-zhou, DU Pei, NIU Tong, et al. A novel hybrid system based on a new proposed algorithm—Multi-objective whale optimization algorithm for wind speed forecasting [J]. Applied Energy, 2017, 208: 344–360. DOI: https://doi.org/10.1016/j.apenergy.2017.10.031.

    Article  Google Scholar 

  33. RAJ S, BHATTACHARYYA B. Optimal placement of TCSC and SVC for reactive power planning using whale optimization algorithm [J]. Swarm and Evolutionary Computation, 2018, 40: 131–143. DOI: https://doi.org/10.1016/j.swevo.2017.12.008.

    Article  Google Scholar 

  34. HE Biao, HUANG Yan, WANG Dan-yang, et al. A parameter-adaptive stochastic resonance based on whale optimization algorithm for weak signal detection for rotating machinery [J]. Measurement, 2019, 136: 658–667. DOI: https://doi.org/10.1016/j.measurement.2019.01.017.

    Article  Google Scholar 

  35. XIE Jing. Numerical modeling and inversion imaging of self-potential by natural element method [D]. Changsha: Central South University, 2023. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Jie-ran conducted the literature review and wrote the first draft of the manuscript. CUI Yi-an provided the concept and edited the draft of the manuscript. XIE Jing provided the measured SP data of lab-based physical experiments. XIE Jing and ZHANG Peng-fei edited the draft of the manuscript. LIU Jian-xin oversaw the orderly conduct of the research.

Corresponding author

Correspondence to Yi-an Cui  (崔益安).

Ethics declarations

LIU Jie-ran, CUI Yi-an, Xie Jing, ZHANG Peng-fei, and LIU Jian-xin declare that they have no conflict of interest.

Additional information

Foundation item: Projects(42174170, 41874145, 42130810) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jr., Cui, Ya., Xie, J. et al. Inversion of self-potential anomalies from regular geometric objects by using whale optimization algorithm. J. Cent. South Univ. 30, 3069–3082 (2023). https://doi.org/10.1007/s11771-023-5432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5432-3

Key words

关键词

Navigation