Skip to main content
Log in

Microstructure and texture evolutions of 310S austenitic stainless steel after cryogenic rolling and subsequent annealing: X-ray and electron backscatter diffraction studies

冷轧及退火对310S 奥氏体不锈钢的微观结构和组织的影响: 基于X 射线和电子背散射衍射分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present work aims to study the microstructure and texture evolutions of thermomechanically processed 310S austenitic stainless steel. The material was cryo-rolled at 20%, 50% and 90% thickness reduction, followed by annealing at 1023, 1223 and 1323 K for 5, 15 and 30 min, respectively. After a 20% thickness reduction, strain-induced α′-martensite was seen along with deformation twinning within the austenite grains. The volume fraction of the deformation twinning was higher than that of α′-martensite. By increasing deformation from 50% to 90%, the volume fraction of α′-martensite went from 11% to 69%, and twinning was replaced by martensite. Brass, Goss, and S components were the dominant textures in the austenite phase after deformation, while the main texture components in α′-martensite were R-Cu, R-cube, F, and E. Brass component was further increased by increasing the thickness reduction in contrast to the Goss component. During annealing, martensite to austenite reversion and recrystallization occurred in the deformed austenite, which resulted in an increase in the volume fractions of the Goss and Brass recrystallization components. However, the annealing texture of the alloy was found to be approximately the same as the cryo-rolling texture. The kinetics of martensite reversion at 1223 K for 5 min was much faster than that at 1023 K. An equiaxed microstructure was not detected at 1023 K for 5 min due to incomplete martensite reversion and primary recrystallization. The optimum annealing temperature for obtaining an ultrafine grain structure was 1023 K for 15 min. Recrystallization and tangible grain growth swiftly occurred at 1173 K and 1273 K.

摘要

本文研究了热处理对310S 奥氏体不锈钢的微观结构和组织的影响。对样品材料进行冷轧, 使其厚度分别减少20%、50% 和90%, 然后在1023、1223 和1323 K 下退火5、15 和30 min。在厚度减少20% 后, 奥氏体内产生孪晶, 且可观察到形变诱发的αʹ马氏体, 孪晶的体积分数大于αʹ马氏体。当厚度变化由50% 增加到90%, αʹ马氏体的体积分数由11% 增加到69%, 孪晶被αʹ马氏体取代。发生形变后奥氏体相主要为Brass、Goss 和S 织构, αʹ马氏体的主要纹理为R-Cu、R-cube、F 和E 组份。随着形变量增大, Brass 织构增加, Goss 织构减少。退火过程中, 马氏体向奥氏体转变, 并发生了再结晶, 使Goss 和Brass 再结晶织构的体积分数增加。材料退火后的结构与冷轧后的大致相同。1223 K 下退火5 min 的马氏体转变速度明显高于1023 K 下的。在1023 K 下退火5 min, 由于马氏体不完全转变和初级再结晶, 未能检测到等轴组织。获得超细晶粒组织的最佳退火温度为1023 K, 退火时间为15 min。在1173 K 和1273 K 时出现快速再结晶和晶粒生长。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. YEGANEH M, KHOSRAVI-BIGDELI I, ESKANDARI M, et al. Corrosion inhibition of l-methionine amino acid as a green corrosion inhibitor for stainless steel in the H2SO4 solution [J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3983–3994. DOI: https://doi.org/10.1007/s11665-020-04890-y.

    Article  Google Scholar 

  2. ESKANDARI M, MOHTADI-BONAB M A, YEGANEH M, et al. High-strain-rate deformation behaviour of new high-Mn austenitic steel during impact shock-loading [J]. Materials Science and Technology, 2019, 35(1): 77–88. DOI: https://doi.org/10.1080/02670836.2018.1540507.

    Article  Google Scholar 

  3. MOGHADAS S M J, YEGANEH M, ZAREE S R A, et al. Influence of low temperature heat treatment on microstructure, corrosion resistance and biological performance of 316L stainless steel manufactured by selective laser melting [J]. CIRP Journal of Manufacturing Science and Technology, 2023, 40: 68–74. DOI: https://doi.org/10.1016/j.cirpj.2022.11.006.

    Article  Google Scholar 

  4. SALEHI M, YEGANEH M, HEIDARI R B, et al. Comparison of the microstructure, corrosion resistance, and hardness of 321 and 310S austenitic stainless steels after thermo-mechanical processing [J]. Materials Today Communications, 2022, 31: 103638. DOI: https://doi.org/10.1016/j.mtcomm.2022.103638.

    Article  Google Scholar 

  5. GOYAL A, KAPOOR H, JAYAHARI L, et al. Experimental investigation to analyze the mechanical and microstructure properties of 310SS performed by TIG welding [J]. Advances in Materials Science and Engineering, 2022: 1–11. DOI: https://doi.org/10.1155/2022/1231843.

  6. LIU Zhu, LU Jun-qiang, SU Hao-zhan, et al. On the role of mechanical deformation in the environmental degradation of 310S stainless steels in supercritical carbon dioxide [J]. Corrosion Science, 2022, 207: 110537. DOI: https://doi.org/10.1016/j.corsci.2022.110537.

    Article  Google Scholar 

  7. SUN Hong-ying, SUN Yong-duo, ZHANG Rui-qian, et al. Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps [J]. Materials & Design, 2015, 67: 165–172. DOI: https://doi.org/10.1016/j.matdes.2014.11.041.

    Article  Google Scholar 

  8. CHRISTIAN J, GIRTON L D, GRUNER J. The effects of cold rolling on the mechanical properties of type 310 stainless steel at room and cryogenic temperatures [J]. Characterization of Minerals, Metals, and Materials, 1962: 127–133.

  9. LEBAN M B, VONČINA M, KOSEC T, et al. Comparison of cycling high temperature corrosion at 650 °C in the presence of NaCl of various austenitic stainless steels [J]. High Temperature Corrosion of Materials, 2023, 99(1): 63–77. DOI: https://doi.org/10.1007/s11085-022-10138-y.

    Article  Google Scholar 

  10. SOMANI M C, JUNTUNEN P, KARJALAINEN L P, et al. Enhanced mechanical properties through reversion in metastable austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2009, 40(3): 729–744. DOI: https://doi.org/10.1007/s11661-008-9723-y.

    Article  Google Scholar 

  11. CHOWDHURY S G, SAHU P, MAHATO B, et al. Evolution of recrystallization texture in AISI300 series austenitic stainless steels after cold rolling to large strain [C]//HALDAR A, SUWAS S, BHATTACHARJEE D. Microstructure and Texture in Steels. London: Springer, 2009: 361–378. DOI: https://doi.org/10.1007/978-1-84882-454-6_21.

    Chapter  Google Scholar 

  12. YILMAZ S O, TEKER T, BATMAZ Y O, et al. Effect of thermomechanical processing on the mechanical properties of CuZn10 alloy [J]. Materials Testing, 2022, 64(7): 1026–1032. DOI: https://doi.org/10.1515/mt-2021-2197.

    Article  Google Scholar 

  13. SHAKHOVA I, DUDKO V, BELYAKOV A, et al. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel [J]. Materials Science and Engineering A, 2012, 545: 176–186. DOI: https://doi.org/10.1016/j.msea.2012.02.101.

    Article  Google Scholar 

  14. LEE J C, NOH Y, KIM N S, et al. Effect of texture and temperature on strain-induced martensitic transformation in 304 austenitic stainless steel [J]. Steel Research International, 2023, 94(2): 2200243. DOI: https://doi.org/10.1002/srin.202200243.

    Article  Google Scholar 

  15. PUN L, SOARES G C, ISAKOV M, et al. Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steel [J]. Materials Science and Engineering A, 2022, 831: 142218. DOI: https://doi.org/10.1016/j.msea.2021.142218.

    Article  Google Scholar 

  16. XU De-ming, WAN Xiang-liang, YU Jian-xin, et al. Effect of cold deformation on microstructures and mechanical properties of austenitic stainless steel [J]. Metals, 2018, 8(7): 522. DOI: https://doi.org/10.3390/met8070522.

    Article  Google Scholar 

  17. GHOSH S K, MALLICK P, CHATTOPADHYAY P P. Effect of reversion of strain induced martensite on microstructure and mechanical properties in an austenitic stainless steel [J]. Journal of Materials Science, 2011, 46(10): 3480–3487. DOI: https://doi.org/10.1007/s10853-011-5253-x.

    Article  Google Scholar 

  18. di SCHINO A, BARTERI M, KENNY J M. Effects of grain size on the properties of a low nickel austenitic stainless steel [J]. Journal of Materials Science, 2003, 38(23): 4725–4733. DOI: https://doi.org/10.1023/A:1027470917858.

    Article  Google Scholar 

  19. ESKANDARI M, YEGANEH M, MOTAMEDI M. Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution [J]. Micro & Nano Letters, 2012, 7(4): 380. DOI: https://doi.org/10.1049/mnl.2012.0162.

    Article  Google Scholar 

  20. ESKANDARI M, NAJAFIZADEH A, KERMANPUR A, et al. Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures [J]. Materials & Design, 2009, 30(9): 3869–3872. DOI: https://doi.org/10.1016/j.matdes.2009.03.043.

    Article  Google Scholar 

  21. TIAMIYU A A, SZPUNAR J A, ODESHI A G, et al. Development of ultra-fine-grained structure in AISI 321 austenitic stainless steel [J]. Metallurgical and Materials Transactions A, 2017, 48(12): 5990–6012. DOI: https://doi.org/10.1007/s11661-017-4361-x.

    Article  Google Scholar 

  22. FU Xiao-qian, JI Yu-cheng, CHENG Xue-qun, et al. Effect of grain size and its uniformity on corrosion resistance of rolled 316L stainless steel by EBSD and TEM [J]. Materials Today Communications, 2020, 25: 101429. DOI: https://doi.org/10.1016/j.mtcomm.2020.101429.

    Article  Google Scholar 

  23. NEZAKAT M, AKHIANI H, SABET S M, et al. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S [J]. Materials Characterization, 2017, 123: 115–127. DOI: https://doi.org/10.1016/j.matchar.2016.11.019.

    Article  Google Scholar 

  24. NEZAKAT M, AKHIANI H, HOSEINI M, et al. Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L [J]. Materials Characterization, 2014, 98: 10–17. DOI: https://doi.org/10.1016/j.matchar.2014.10.006.

    Article  Google Scholar 

  25. KORZNIKOVA G, MIRONOV S, KONKOVA T, et al. EBSD characterization of cryogenically rolled type 321 austenitic stainless steel [J]. Metallurgical and Materials Transactions A, 2018, 49(12): 6325–6336. DOI: https://doi.org/10.1007/s11661-018-4919-2.

    Article  Google Scholar 

  26. TIAMIYU A A, ODESHI A G, SZPUNAR J A. Austenitic reversion of cryo-rolled Ti-stabilized austenitic stainless steel: High-resolution EBSD investigation [J]. Journal of Materials Engineering and Performance, 2018, 27(2): 889–904. DOI: https://doi.org/10.1007/s11665-018-3180-6.

    Article  Google Scholar 

  27. ODNOBOKOVA M, BELYAKOV A, ENIKEEV N, et al. Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling [J]. Materials Science and Engineering A, 2017, 689: 370–383. DOI: https://doi.org/10.1016/j.msea.2017.02.073.

    Article  Google Scholar 

  28. CHOWDHURY S G, DAS S, RAVIKUMAR B, et al. Textural development in AISI 316 stainless steel during cold rolling and annealing [J]. Materials Science Forum, 2002, 408–412: 1371–1376. DOI: https://doi.org/10.4028/www.scientific.net/msf.408-412.1371.

    Article  Google Scholar 

  29. JIAO Wei-chao, LI Hua-bing, FENG Hao, et al. Effect of high nitrogen addition on microstructure and mechanical properties of as-cast M42 high speed steel [J]. ISIJ International, 2020, 60(3): 564–572. DOI: https://doi.org/10.2355/isijinternational.isijint-2019-417.

    Article  Google Scholar 

  30. WANG Xu-biao, LIU Chang-bo, QIN Yu-man, et al. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel [J]. Materials Science and Engineering A, 2022, 832: 142357. DOI: https://doi.org/10.1016/j.msea.2021.142357.

    Article  Google Scholar 

  31. SOHRABI M J, NAGHIZADEH M, MIRZADEH H. Deformation-induced martensite in austenitic stainless steels: A review [J]. Archives of Civil and Mechanical Engineering, 2020, 20(4): 124. DOI: https://doi.org/10.1007/s43452-020-00130-1.

    Article  Google Scholar 

  32. SHEN Y F, LI X X, SUN X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Materials Science and Engineering A, 2012, 552: 514–522. DOI: https://doi.org/10.1016/j.msea.2012.05.080.

    Article  Google Scholar 

  33. FENG Zhang-xi, ZECEVIC M, KNEZEVIC M. Stressassisted (γα′) and strain-induced (γεsα′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels [J]. International Journal of Plasticity, 2021, 136: 102807. DOI: https://doi.org/10.1016/j.ijplas.2020.102807.

    Article  Google Scholar 

  34. BROFMAN P J, ANSELL G S. On the effect of carbon on the stacking fault energy of austenitic stainless steels [J]. Metallurgical Transactions A, 1978, 9(6): 879–880. DOI: https://doi.org/10.1007/BF02649799.

    Article  Google Scholar 

  35. RHODES C G, THOMPSON A W. The composition dependence of stacking fault energy in austenitic stainless steels [J]. Metallurgical Transactions A, 1977, 8(12): 1901–1906. DOI: https://doi.org/10.1007/BF02646563.

    Article  Google Scholar 

  36. SUN Guo-sheng, ZHAO Miao-miao, DU Lin-xiu, et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel [J]. Materials Characterization, 2022, 184: 111674. DOI: https://doi.org/10.1016/j.matchar.2021.111674.

    Article  Google Scholar 

  37. AMININEJAD A, JAMAATI R, HOSSEINIPOUR S J. Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling [J]. Materials Science and Engineering A, 2019, 767: 138433. DOI: https://doi.org/10.1016/j.msea.2019.138433.

    Article  Google Scholar 

  38. JAMAATI R, TOROGHINEJAD M R. Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process [J]. Materials Science and Engineering A, 2014, 598: 263–276. DOI: https://doi.org/10.1016/j.msea.2014.01.048.

    Article  Google Scholar 

  39. ESKANDARI M, ZAREI-HANZAKI A, MOHTADI-BONAB M A, et al. Grain-orientation-dependent of γ-ε-α′ transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel [J]. Materials Science and Engineering A, 2016, 674: 514–528. DOI: https://doi.org/10.1016/j.msea.2016.08.024.

    Article  Google Scholar 

  40. ESKANDARI M, KERMANPUR A, NAJAFIZADEH A. Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment [J]. Materials Letters, 2009, 63(16): 1442–1444. DOI: https://doi.org/10.1016/j.matlet.2009.03.043.

    Article  Google Scholar 

  41. di SCHINO A, SALVATORI I, KENNY J M. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel [J]. Journal of Materials Science, 2002, 37(21): 4561–4565. DOI: https://doi.org/10.1023/A:1020631912685.

    Article  Google Scholar 

  42. KUMAR B R, SINGH A K, DAS S, et al. Cold rolling texture in AISI 304 stainless steel [J]. Materials Science and Engineering A, 2004, 364(1–2): 132–139. DOI: https://doi.org/10.1016/j.msea.2003.08.012.

    Article  Google Scholar 

  43. ESKANDARI M, NAJAFIZADEH A, KERMANPUR A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing [J]. Materials Science and Engineering A, 2009, 519(1–2): 46–50. DOI: https://doi.org/10.1016/j.msea.2009.04.038.

    Article  Google Scholar 

  44. ESKANDARI M, KERMANPUR A, NAJAFIZADEH A. Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment [J]. Metallurgical and Materials Transactions A, 2009, 40(9): 2241–2249. DOI: https://doi.org/10.1007/s11661-009-9916-z.

    Article  Google Scholar 

  45. REZAEI H A, GHAZANI M S, EGHBALI B. Effect of post deformation annealing on the microstructure and mechanical properties of cold rolled AISI 321 austenitic stainless steel [J]. Materials Science and Engineering A, 2018, 736: 364–374. DOI: https://doi.org/10.1016/j.msea.2018.09.012.

    Article  Google Scholar 

  46. PADILHA A F, PLAUT R L, RIOS P R. Annealing of cold-worked austenitic stainless steels [J]. ISIJ International, 2003, 43(2): 135–143. DOI: https://doi.org/10.2355/isijinternational.43.135.

    Article  Google Scholar 

  47. YANG S W, SPRUIELL J E. Cold-worked state and annealing behaviour of austenitic stainless steel [J]. Journal of Materials Science, 1982, 17(3): 677–690. DOI: https://doi.org/10.1007/BF00540364.

    Article  Google Scholar 

  48. DONADILLE C, VALLE R, DERVIN P, et al. Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: Example of an austenitic stainless steel [J]. Acta Metallurgica, 1989, 37(6): 1547–1571. DOI: https://doi.org/10.1016/0001-6160(89)90123-5.

    Article  Google Scholar 

  49. WEI Fu-an, WANG Jin-hui, SHI Bo, et al. Effect of annealing time on bimodal microstructures and tensile properties of Mg-6Sn-3Al-Zn alloy [J]. Materials Research Express, 2020, 7(10): 106504. DOI: https://doi.org/10.1088/2053-1591/abbb56.

    Article  Google Scholar 

  50. ESKANDARI M, MOHTADI-BONAB M A, BASU R, et al. Preferred crystallographic orientation development in nano/ultrafine-grained 316L stainless steel during martensite to austenite reversion [J]. Journal of Materials Engineering and Performance, 2015, 24(2): 644–653. DOI: https://doi.org/10.1007/s11665-014-1340-x.

    Article  Google Scholar 

  51. SHIRDEL M, MIRZADEH H, PARSA M H. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment [J]. Advanced Engineering Materials, 2015, 17(8): 1226–1233. DOI: https://doi.org/10.1002/adem.201400541.

    Article  Google Scholar 

  52. NAIK S N, WALLEY S M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals [J]. Journal of Materials Science, 2020, 55(7): 2661–2681. DOI: https://doi.org/10.1007/s10853-019-04160-w.

    Article  Google Scholar 

  53. LI Hua-bing, JIANG Zhou-hua, ZHANG Zu-rui, et al. Effect of grain size on mechanical properties of nickel-free high nitrogen austenitic stainless steel [J]. Journal of Iron and Steel Research, International, 2009, 16(1): 58–61. DOI: https://doi.org/10.1016/S1006-706X(09)60011-X.

    Article  Google Scholar 

  54. TAKAKI S, KAWASAKI K, KIMURA Y. Mechanical properties of ultra fine grained steels [J]. Journal of Materials Processing Technology, 2001, 117(3): 359–363. DOI: https://doi.org/10.1016/S0924-0136(01)00797-X.

    Article  Google Scholar 

  55. PETCH N J. The cleavage strength of polycrystals [J]. Journal of Iron and Steel Institute, 1953, 174(1): 25–28.

    Google Scholar 

  56. HALL E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747–753. DOI: https://doi.org/10.1088/0370-1301/64/9/303.

    Article  Google Scholar 

  57. ANWAR M S, MELINIA R K, PRADISTI M G, et al. Effect of prior austenite grain-size on the annealing twin density and hardness in the austenitic stainless steel [J]. International Journal of Technology, 2021, 12(6): 1149. DOI: https://doi.org/10.14716/ijtech.v12i6.5190.

    Article  Google Scholar 

  58. HUANG Jun-xia, YE Xiao-ning, GU Jia-qing, et al. Enhanced mechanical properties of type AISI301LN austenitic stainless steel through advanced thermo mechanical process [J]. Materials Science and Engineering A, 2012, 532: 190–195. DOI: https://doi.org/10.1016/j.msea.2011.10.080.

    Article  Google Scholar 

  59. CHEN X H, LU J, LU L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel [J]. Scripta Materialia, 2005, 52(10): 1039–1044. DOI: https://doi.org/10.1016/j.scriptamat.2005.01.023.

    Article  Google Scholar 

  60. HUG E, PRASATH BABU R, MONNET I, et al. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels [J]. Applied Surface Science, 2017, 392: 1026–1035. DOI: https://doi.org/10.1016/j.apsusc.2016.09.110.

    Article  Google Scholar 

  61. TIAMIYU A A, EDUOK U, SZPUNAR J A, et al. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media [J]. Scientific Reports, 2019, 9(1): 1–18. DOI: https://doi.org/10.1038/s41598-019-48594-3.

    Article  Google Scholar 

  62. ROY B, KUMAR R, DAS J. Effect of cryorolling on the microstructure and tensile properties of bulk nano-austenitic stainless steel [J]. Materials Science and Engineering A, 2015, 631: 241–247. DOI: https://doi.org/10.1016/j.msea.2015.02.050.

    Article  Google Scholar 

  63. NAGHIZADEH M, MIRZADEH H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel [J]. Steel Research International, 2019, 90(10): 1900153. DOI: https://doi.org/10.1002/srin.201900153.

    Article  Google Scholar 

  64. KHEIRI S, MIRZADEH H, NAGHIZADEH M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Materials Science and Engineering A, 2019, 759: 90–96. DOI: https://doi.org/10.1016/j.msea.2019.05.028.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eskandari.

Additional information

Contributors

M. ESKANDARI: Study conception and design; R. B. HEIDARI, M. ESKANDARI: Data collection; R. B. HEIDARI, M. ESKANDARI, M. YEGANEH: Analysis and interpretation of results; R. B. HEIDARI: Draft manuscript preparation. All authors reviewed the results and approved the final version of the manuscript.

Foundation item

Project(SCU.EM99.30796) supported by the Shahid Chamran University of Ahvaz, Iran

Conflict of interest

R. B. HEIDARI, M. ESKANDARI, and M. YEGANEH declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, R.B., Eskandari, M. & Yeganeh, M. Microstructure and texture evolutions of 310S austenitic stainless steel after cryogenic rolling and subsequent annealing: X-ray and electron backscatter diffraction studies. J. Cent. South Univ. 30, 763–785 (2023). https://doi.org/10.1007/s11771-023-5270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5270-3

Key words

关键词

Navigation