Skip to main content
Log in

Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α′-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α′-martensite to γ-austenite in the steel was estimated to be 80 kJ mol−1. TiC precipitates and unreversed triple junction α′-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang, and H. Fan: Surf. Coatings Technol., 2012, vol. 206, pp. 3399–3404.

    Article  Google Scholar 

  2. D. T. Llewellyn and R. C. Hudd: STEELS-Metallurgy and Applications, 3rd ed., Reed Educational and Professional Publishing Ltd, Oxford, UK, 1998, .

    Google Scholar 

  3. Y. Y. Chen, Y. M. Liou, and H. C. Shih: Mater. Sci. Eng. A, 2005, vol. 407, pp. 114–126.

    Article  Google Scholar 

  4. M. Eskandari, A. Kermanpur, and A. Najafizadeh: Metall. Mater. Trans. A, 2009, vol. 40, 2241–2249.

    Article  Google Scholar 

  5. M. Eskandari, A. Najafizadeh, and A. Kermanpur: Mater. Sci. Eng. A, 2009, vol. 519, pp. 46–50.

    Article  Google Scholar 

  6. A Di Schino, M Barteri, and J M Kenny: J Mater Sci Lett, 2002, vol. 21, 751–753.

    Article  Google Scholar 

  7. D. L. Johannsen, A. Kyrolainen, and P. J. Ferreira: Metall. Mater. Trans. A, 2005, vol. 37A, pp. 2325-2338.

    Google Scholar 

  8. R. Song, D. Ponge, D. Raabe, J. G. Speer, and D. K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1-17.

    Article  Google Scholar 

  9. T. J. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–174.

    Google Scholar 

  10. Nohara, K., Ono, Y., Ohashi, N.: J. Iron Steel Inst. Jpn, 1977, vol. 63, pp. 212-222.

    Google Scholar 

  11. M. Eskandari, A. Najafizadeh, A. Kermanpur, and M. Karimi: Mater. Des., 2009, vol. 30, pp. 3869–3872.

    Article  Google Scholar 

  12. R. D. K. Misra, S. Nayak, S. A. Mali, J. S. Shah, M. C. Somani, and L. P. Karjalainen: Met. Mater. Trans. A, 2010, vol. 41, pp. 3–12.

    Article  Google Scholar 

  13. R. D. K. Misra, Z. Zhang, P. K. C. Venkatasurya, M. C. Somani, and L. P. Karjalainen: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7779-7792.

    Article  Google Scholar 

  14. S. Rajasekhara and P. J. Ferreira: Acta Mater., 2011, vol. 59, 738-748.

    Article  Google Scholar 

  15. H. F. G. De Abreu, S. S. De Carvalho, P. De Lima Neto, R. P. Dos Santos, V. N. Freire, P. M. D. O. Silva, and S. S. M. Tavares: Mater. Res., 2007, vol. 10, pp. 359-336.

    Article  Google Scholar 

  16. A. Das, S. Sivaprasad, M. Ghosh, P. C. Chakraborti, and S. Tarafder: Mater. Sci. Eng. A, 2008, vol. 486, pp. 283-286.

    Article  Google Scholar 

  17. A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, and D. K. Matlock: Scr. Mater., 2004, vol. 50, pp. 1445-1449.

    Article  Google Scholar 

  18. K. Tomimura, S. Takaki, and Y. Tokunaga: ISIJ Int., 1991, vol. 31, pp. 1431-1437.

    Article  Google Scholar 

  19. T. Tsuchiyama, Y. Nakamura, H. Hidaka, and S. Takaki: Mater. Trans. 45, 2259 (2004).

    Article  Google Scholar 

  20. M. C. Somani, P. Juntunen, L. P. Karjalainen, and R. D. K. Misra: Metall. Mater. Trans. A, 2009, vol. 40, pp. 729-744.

    Article  Google Scholar 

  21. C. Celada-casero, B. M. Huang, M. M. Aranda, J. Yang, and D. S. Martin: Mater. Charact., 2016, vol. 118, pp. 129-141.

    Article  Google Scholar 

  22. L. Kaufman, E. V. Clougherty, and R. J. Weiss: Acta Metall., 1963, vol. 11, pp. 323-335.

    Article  Google Scholar 

  23. C. S. Yoo, Y. M. Park, Y. S. Jung, and Y. K. Lee: Scr. Mater., 2008, vol. 59, pp. 71-74.

    Article  Google Scholar 

  24. M. G. Shahri, S. R. Hosseini, and M. Salehi: Acta Metall. Sin. (English Lett.), 2015, vol. 28, pp. 499-504.

    Article  Google Scholar 

  25. T. Tomida, M. Wakita, M. Yasuyama, S. Sugaya, Y. Tomota, and S. C. Vogel: Acta Mater., 2013, vol. 61, pp. 2828-2839.

    Article  Google Scholar 

  26. B.R. Kumar, A.K. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, and D.K. Bhattacharya: Mater. Sci. Eng. A, 2006, vol. 429, pp. 205–11.

    Article  Google Scholar 

  27. A. Poulon-quintin, S. Brochet, J. Vogt, and J. Glez: ISIJ Int., 2009, vol. 49, pp. 293-301.

    Article  Google Scholar 

  28. T. Michler: Materwiss. Werksttech., 2007, vol. 38, pp. 32-35.

    Article  Google Scholar 

  29. M. Eskandari, A. Kermanpur, and A. Najafizadeh: Mater. Lett., 2009, vol. 63, pp. 1442-1444.

    Article  Google Scholar 

  30. J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506-1512.

    Article  Google Scholar 

  31. E. A. Wilson: Worked Examples in the Kinetics and Thermodynamics of Phase Transformations, 1st ed., The Institution of Metallurgists, London, UK, 1983, pp. 40.

    Google Scholar 

  32. W. D.Callister and D. G. Rethwisch: Materials Science and Engineering, 9th ed., Wiley, United States, 2014, pp. 368.

    Google Scholar 

  33. E. Lee, R. Banerjee, S. Kar, D. Bhattacharyya, H. L. Fraser, R. Banerjee, S. Kar, D. Bhattacharyya, and H. L. Fraser: Philos. Mag., 2007, vol. 87, pp. 3615-3627.

    Article  Google Scholar 

  34. D. A. Porter, K. E. Easterling, and M. Y. Sherif: Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, FL, USA, 2009, pp. 143-146.

    Google Scholar 

  35. M. Moallemi, A. Najafizadeh, A. Kermanpur, and A. Rezaee: Mater. Sci. Eng. A, 2011, vol. 530, pp. 378-381.

    Article  Google Scholar 

  36. C. A. Apple and G. Krauss; Acta Met., 1972, vol. 20, pp. 849-856.

    Article  Google Scholar 

  37. A. K. Jena and M. C. Chaturvedi: Phase Transformation in Materials, Prentice Hall, New Jersey, 1992, pp. 342.

    Google Scholar 

  38. S. Rajasekhara, L. P. Karjalainen, A. Kyröläinen, and P. J. Ferreira: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1986-1996.

    Article  Google Scholar 

  39. K. S. Min, K. J. Kim, and S. W. Nam: J. Alloys Compd., 2004, vol. 370, pp. 223-229.

    Article  Google Scholar 

  40. S. Xu, X. Q. Wu, E. H. Han, W. Ke, and Y. Katada: Mater. Sci. Eng. A, 2008, vol. 490, pp. 16-25.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) Vanier Graduate Scholarship for the financial support of this study. The support of ACUREN Group Inc. for the use of Fischer Feritscope MP30E is well appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tiamiyu.

Additional information

Manuscript submitted April 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiamiyu, A.A., Szpunar, J.A., Odeshi, A.G. et al. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel. Metall Mater Trans A 48, 5990–6012 (2017). https://doi.org/10.1007/s11661-017-4361-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4361-x

Navigation