Skip to main content
Log in

Impact of substrate on opto-thermal response of thin metallic targets under irradiation with femtosecond laser pulses

衬底对飞秒激光脉冲照射后薄金属目标光热响应的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro- and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films (gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laser-based fabrication set ups and processing schemes.

摘要

飞秒脉冲激光器由于其在微、纳米尺度上图案制造精确的能力,在过去的几十年里得到了广泛 的应用。对于高效材料加工,一个关键问题是确定在实验装置中使用的激光参数,而在已进行的系统 研究中,主要是强调独立的单个参数的影响,很少关注辐照的固体基底材料的作用。因此,本研究强 调了衬底对不同厚度薄膜的影响,结果表明,衬底的光学和热物理性质都对辐照薄膜上的热指纹有影 响,在较小的薄膜尺寸下影响较大。选择了两种代表性材料硅和熔融硅作为不同光学和热物理形态薄 膜(金和镍)的典型衬底,并对辐照的固体热响应和损伤阈值进行评估,为基于激光的制备装置和工艺 的设计提供指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STRATAKIS E, BONSE J, HEITZ J, et al. Laser engineering of biomimetic surfaces [J]. Materials Science and Engineering R: Reports, 2020, 141: 100562. DOI: https://doi.org/10.1016/j.mser.2020.100562.

    Article  Google Scholar 

  2. VOROBYEV A Y, GUO Chun-lei. Direct femtosecond laser surface nano/microstructuring and its applications [J]. Laser & Photonics Reviews, 2013, 7(3): 385–407. DOI: https://doi.org/10.1002/lpor.201200017.

    Article  Google Scholar 

  3. ZORBA V, STRATAKIS E, BARBEROGLOU M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Advanced Materials, 2008, 20(21): 4049–4054. DOI: https://doi.org/10.1002/adma.200800651.

    Article  Google Scholar 

  4. ZORBA V, PERSANO L, PISIGNANO D, et al. Making silicon hydrophobic: Wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation [J]. Nanotechnology, 2006, 17(13): 3234–3238. DOI: https://doi.org/10.1088/0957-4484/17/13/026.

    Article  Google Scholar 

  5. DIELS J, RUDOLPH W. Ultrashort laser pulse phenomena: Fundamentals, techniques, and applications on a femtosecond time scale [M]. 2nd edition. Elsevier/Academic Press, 2006.

  6. PAPADOPOULOU E L, SAMARA A, BARBEROGLOU M, et al. Silicon scaffolds promoting three-dimensional neuronal web of cytoplasmic processes [J]. Tissue Engineering Part C, Methods, 2010, 16(3): 497–502. DOI: https://doi.org/10.1089/ten.TEC.2009.0216.

    Article  Google Scholar 

  7. PAPADOPOULOS A, SKOULAS E, MIMIDIS A, et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(32): e1901123. DOI: https://doi.org/10.1002/adma.201901123.

    Article  Google Scholar 

  8. TSIBIDIS G D, BARBEROGLOU M, LOUKAKOS P A, et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions [J]. Physical Review B, 2012, 86(11): 115316. DOI: https://doi.org/10.1103/physrevb.86.115316.

    Article  Google Scholar 

  9. TSIBIDIS G D, FOTAKIS C, STRATAKIS E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures [J]. Physical Review B, 2015, 92(4): 041405. DOI: https://doi.org/10.1103/physrevb.92.041405.

    Article  Google Scholar 

  10. TSIBIDIS G D, STRATAKIS E, LOUKAKOS P A, et al. Controlled ultrashort-pulse laser-induced ripple formation on semiconductors [J]. Applied Physics A, 2014, 114(1): 57–68. DOI: https://doi.org/10.1007/s00339-013-8113-5.

    Article  Google Scholar 

  11. DERRIEN T J Y, ITINA T E, TORRES R, et al. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon [J]. Journal of Applied Physics, 2013, 114(8): 083104. DOI: https://doi.org/10.1063/1.4818433.

    Article  Google Scholar 

  12. SKOLSKI J Z P, RÖMER G R B E, OBONA J V, et al. Laser-induced periodic surface structures: Fingerprints of light localization [J]. Physical Review B, 2012, 85(7): 075320. DOI: https://doi.org/10.1103/physrevb.85.075320.

    Article  Google Scholar 

  13. BONSE J, KRÜGER J, HÖHM S, et al. Femtosecond laser-induced periodic surface structures [J]. Journal of Laser Applications, 2012, 24(4): 042006. DOI: https://doi.org/10.2351/1.4712658.

    Article  Google Scholar 

  14. GARRELIE F, COLOMBIER J P, PIGEON F, et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples [J]. Optics Express, 2011, 19(10): 9035–9043. DOI: https://doi.org/10.1364/oe.19.009035.

    Article  Google Scholar 

  15. HUANG Min, ZHAO Fu-li, CHENG Ya, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser [J]. ACS Nano, 2009, 3(12): 4062–4070. DOI: https://doi.org/10.1021/nn900654v..

    Article  Google Scholar 

  16. BONSE J, KRÜGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon [J]. Journal of Applied Physics, 2010, 108(3): 034903. DOI: https://doi.org/10.1063/1.3456501.

    Article  Google Scholar 

  17. TSIBIDIS G D, SKOULAS E, PAPADOPOULOS A, et al. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers [J]. Physical Review B, 2016, 94(8): 081305. DOI: https://doi.org/10.1103/physrevb.94.081305.

    Article  Google Scholar 

  18. SHIMOTSUMA Y, KAZANSKY P G, QIU Jia-rong, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses [J]. Physical Review Letters, 2003, 91(24): 247405. DOI: https://doi.org/10.1103/PhysRevLett.91.247405.

    Article  Google Scholar 

  19. CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids [J]. Applied Physics A, 1996, 63(2): 109–115. DOI: https://doi.org/10.1007/BF01567637.

    Article  Google Scholar 

  20. RETHFELD B, IVANOV D S, GARCIA M E, et al. Modelling ultrafast laser ablation [J]. Journal of Physics D: Applied Physics, 2017, 50(19): 193001. DOI: https://doi.org/10.1088/1361-6463/50/19/193001.

    Article  Google Scholar 

  21. BÉVILLON E, STOIAN R, COLOMBIER J P. Nonequilibrium optical properties of transition metals upon ultrafast electron heating [J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2018, 30(38): 385401. DOI: https://doi.org/10.1088/1361-648X/aad8e5.

    Article  Google Scholar 

  22. TSIBIDIS G D, MOUCHLIADIS L, PEDIO M, et al. Modeling ultrafast out-of-equilibrium carrier dynamics and relaxation processes upon irradiation of hexagonal silicon carbide with femtosecond laser pulses [J]. Physical Review B, 2020, 101(7): 075207. DOI: https://doi.org/10.1103/physrevb.101.075207.

    Article  Google Scholar 

  23. BÖHME R, PISSADAKIS S, RUTHE D, et al. Laser backside etching of fused silica with ultra-short pulses [J]. Applied Physics A, 2006, 85(1): 75–78. DOI: https://doi.org/10.1007/s00339-006-3652-7.

    Article  Google Scholar 

  24. JEE Y, BECKER M F, WALSER R M. Laser-induced damage on single-crystal metal surfaces [J]. Journal of the Optical Society of America B, 1988, 5(3): 648. DOI: https://doi.org/10.1364/josab.5.000648.

    Article  Google Scholar 

  25. BONSE J, BAUDACH S, KRUGER J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology [J]. Applied Physics A-Materials Science & Processing, 2002, 74: 19–25. DOI: https://doi.org/10.1007/s003390100893.

    Article  Google Scholar 

  26. BAUDACH S, BONSE J, KRÜGER J, et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate [J]. Applied Surface Science, 2000, 154–155: 555–560. DOI: https://doi.org/10.1016/S0169-4332(99)00474-2.

    Article  Google Scholar 

  27. KIM S H, SOHN I B, JEONG S. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining [J]. Applied Surface Science, 2009, 255(24): 9717–9720. DOI: https://doi.org/10.1016/j.apsusc.2009.04.058.

    Article  Google Scholar 

  28. TSIBIDIS G D, STRATAKIS E. Ionisation processes and laser induced periodic surface structures in dielectrics with mid-infrared femtosecond laser pulses [J]. Scientific Reports, 2020, 10: 8675. DOI: https://doi.org/10.1038/s41598-020-65613-w.

    Article  Google Scholar 

  29. BURAKOV I M, BULGAKOVA N M, STOIAN R, et al. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses [J]. Applied Physics A, 2005, 81(8): 1639–1645. DOI: https://doi.org/10.1007/s00339-005-3320-3.

    Article  Google Scholar 

  30. CHIMIER B, UTÉZA O, SANNER N, et al. Damage and ablation thresholds of fused-silica in femtosecond regime [J]. Physical Review B, 2011, 84(9): 094104. DOI: https://doi.org/10.1103/physrevb.84.094104.

    Article  Google Scholar 

  31. ANISIMOV S I, KAPELIOVICH B L, PEREL’MAN T L. Electron-emission from surface of metals induced by ultrashort laser pulses [J]. Sov Phys-Tech Phys, 1967, 11: 945.

    Google Scholar 

  32. IVANOV D S, ZHIGILEI L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [J]. Physical Review B, 2003, 68(6): 064114. DOI: https://doi.org/10.1103/physrevb.68.064114.

    Article  Google Scholar 

  33. SHWETHARANI R, CHANDAN H R, SAKAR M, et al. Photocatalytic semiconductor thin films for hydrogen production and environmental applications [J]. International Journal of Hydrogen Energy, 2020, 45(36): 18289–18308. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.149.

    Article  Google Scholar 

  34. PIEGARI A, FLORY F O. Optical thin films and coatings: from materials to applications [M]. Woodhead Publishing, 2013. DOI: https://doi.org/10.1016/B978-0-85709-594-7.50027-2.

  35. SREEKANTH K V, SREEJITH S, HAN Song, et al. Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity [J]. Nature Communications, 2018, 9: 369. DOI: https://doi.org/10.1038/s41467-018-02860-6.

    Article  Google Scholar 

  36. KUMAR M, KHAN M A, ARAFAT H A. Recent developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination [J]. ACS Omega, 2020, 5(8): 3792–3800. DOI: https://doi.org/10.1021/acsomega.9b03975.

    Article  Google Scholar 

  37. KIM H. Laser-printed and processed LiCoO2 cathode thick films for Li-ion microbatteries [J]. Journal of Laser Micro, 2012, 7(3): 320–325. DOI: https://doi.org/10.2961/jlmn.2012.03.0016.

    Article  Google Scholar 

  38. PRÖLL J, KOHLER R, MANGANG A, et al. Diode laser heat treatment of lithium manganese oxide films [J]. Applied Surface Science, 2012, 258(12): 5146–5152. DOI: https://doi.org/10.1016/j.apsusc.2012.01.156.

    Article  Google Scholar 

  39. PROELL J. 3D structures in battery materials [J]. Journal of Laser Micro, 2012, 7(1): 97–104. DOI: https://doi.org/10.2961/jlmn.2012.01.0019.

    Google Scholar 

  40. PFLEGING W, KOHLER R, TORGE M, et al. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring [J]. Applied Surface Science, 2011, 257(18): 7907–7912. DOI: https://doi.org/10.1016/j.apsusc.2011.02.126

    Article  Google Scholar 

  41. KOHLER R, BESSER H, HAGEN M, et al. Laser micro-structuring of magnetron-sputtered SnOx thin films as anode material for lithium ion batteries [J]. Microsystem Technologies, 2011, 17(2): 225–232. DOI: https://doi.org/10.1007/s00542-011-1259-1

    Article  Google Scholar 

  42. KOHLER R, SMYREK P, ULRICH S, et al. Patterning and annealing of nanocrystalline LiCoO2 thin films[J]. Journal of Optoelectronics and Advanced Materials, 2010, 12: 547–552.

    Google Scholar 

  43. SKOULAS E, TASOLAMPROU A C, KENANAKIS G, et al. Laser induced periodic surface structures as polarizing optical elements [J]. Applied Surface Science, 2021, 541: 148470. DOI: https://doi.org/10.1016/j.apsusc.2020.148470.

    Article  Google Scholar 

  44. WELLERSHOFF S S, HOHLFELD J, GÜDDE J, et al. The role of electron–phonon coupling in femtosecond laser damage of metals [J]. Applied Physics A, 1999, 69(1): S99–S107. DOI: https://doi.org/10.1007/s003399900305.

    Google Scholar 

  45. HOHLFELD J, MÜLLER J G, WELLERSHOFF S S, et al. Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness [J]. Applied Physics B, 1997, 65: 387–390. DOI: https://doi.org/10.1007/s003400050333.

    Article  Google Scholar 

  46. GÜDDE J, HOHLFELD J, MÜLLER J G, et al. Damage threshold dependence on electron-phonon coupling in Au and Ni films [J]. Applied Surface Science, 1998, 127–129: 40–45. DOI: https://doi.org/10.1016/S0169-4332(98)00002-6.

    Article  Google Scholar 

  47. HOHLFELD J, WELLERSHOFF S S, GÜDDE J, et al. Electron and lattice dynamics following optical excitation of metals [J]. Chemical Physics, 2000, 251(1–3): 237–258. DOI: https://doi.org/10.1016/S0301-0104(99)00330-4.

    Article  Google Scholar 

  48. STUART B C, FEIT M D, HERMAN S, et al. Optical ablation by high-power short-pulse lasers [J]. Journal of the Optical Society of America B, 1996, 13(2): 459. DOI: https://doi.org/10.1364/josab.13.000459.

    Article  Google Scholar 

  49. BONN M, DENZLER D N, FUNK S, et al. Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport [J]. Physical Review B, 2000, 61(2): 1101–1105. DOI: https://doi.org/10.1103/physrevb.61.1101.

    Article  Google Scholar 

  50. TSIBIDIS G D, MANSOUR D, STRATAKIS E. Damage threshold evaluation of thin metallic films exposed to femtosecond laser pulses: The role of material thickness [J]. Optics & Laser Technology, 2022, 156: 108484. DOI: https://doi.org/10.1016/j.optlastec.2022.108484.

    Article  Google Scholar 

  51. CHEN An-min, SUI Lai-zhi, SHI Ying, et al. Ultrafast investigation of electron dynamics in the gold-coated two-layer metal films [J]. Thin Solid Films, 2013, 529: 209–216. DOI: https://doi.org/10.1016/j.tsf.2012.06.027.

    Article  Google Scholar 

  52. CHEN A M, XU H F, JIANG Y F, et al. Modeling of femtosecond laser damage threshold on the two-layer metal films [J]. Applied Surface Science, 2010, 257(5): 1678–1683. DOI: https://doi.org/10.1016/j.apsusc.2010.08.122.

    Article  Google Scholar 

  53. PETROVIĆ S, TSIBIDIS G D, KOVAČEVIĆ A, et al. Effects of static and dynamic femtosecond laser modifications of Ti/Zr multilayer thin films [J]. The European Physical Journal D, 2021, 75(12): 304. DOI: https://doi.org/10.1140/epjd/s10053-021-00291-5.

    Article  Google Scholar 

  54. GAKOVIĆ B, TSIBIDIS G D, SKOULAS E, et al. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse [J]. Journal of Applied Physics, 2017, 122(22): 223106. DOI: https://doi.org/10.1063/1.5016548.

    Article  Google Scholar 

  55. TSIBIDIS G D. Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics [J]. Applied Physics Letters, 2014, 104(5): 051603. DOI: https://doi.org/10.1063/1.4863959.

    Article  Google Scholar 

  56. KUZNIETSOV O V, TSIBIDIS G D, DEMCHISHIN A V, et al. Femtosecond laser-induced periodic surface structures on 2D Ti-Fe multilayer condensates [J]. Nanomaterials (Basel, Switzerland), 2021, 11(2): 316. DOI: https://doi.org/10.3390/nano11020316.

    Article  Google Scholar 

  57. CHEN Long, CAO Kai-qiang, LI Yan-li, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens [J]. Opto-Electronic Advances, 2021, 4(12): 200036. DOI: https://doi.org/10.29026/oea.2021.200036.

    Article  Google Scholar 

  58. BHARATI M S S, SOMA V R. Flexible SERS substrates for hazardous materials detection: Recent advances [J]. Opto-Electronic Advances, 2021, 4(11): 210048. DOI: https://doi.org/10.29026/oea.2021.210048.

    Article  Google Scholar 

  59. PAPANIKOLAOU A, TSEREVELAKIS G J, MELESSANAKI K, et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework [J]. Opto-Electronic Advances, 2020, 3(2): 19003701–19003711. DOI: https://doi.org/10.29026/oea.2020.190037.

    Article  Google Scholar 

  60. BORN M, WOLF E. Principles of optics electromagnetic theory of propagation, interference and diffraction of light [M]. 7th edition. Cambridge University Press, 1999.

  61. GREEN M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310. DOI: https://doi.org/10.1016/j.solmat.2008.06.009.

    Article  Google Scholar 

  62. RAKIC A D, DJURISIC A B, ELAZAR J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices [J]. Applied Optics, 1998, 37(22): 5271–5283. DOI: https://doi.org/10.1364/ao.37.005271.

    Article  Google Scholar 

  63. TSIBIDIS G D, MIMIDIS A, SKOULAS E, et al. Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams [J]. Applied Physics A, 2017, 124(1): 1–13. DOI: https://doi.org/10.1007/s00339-017-1443-y.

    Google Scholar 

  64. PETRAKAKIS E, TSIBIDIS G D, STRATAKIS E. Modelling of the ultrafast dynamics and surface plasmon properties of silicon upon irradiation with mid-IR femtosecond laser pulses [J]. Physical Review B, 2019, 99(19): 195201. DOI: https://doi.org/10.1103/physrevb.99.195201.

    Article  Google Scholar 

  65. LIN Zhi-bin, ZHIGILEI L V, CELLI V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium [J]. Physical Review B, 2008, 77(7): 075133. DOI: https://doi.org/10.1103/physrevb.77.075133.

    Article  Google Scholar 

  66. GNILITSKYI I, DERRIEN T J Y, LEVY Y, et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity [J]. Scientific Reports, 2017, 7: 8485. DOI: https://doi.org/10.1038/s41598-017-08788-z.

    Article  Google Scholar 

Download references

Funding

Projects(862016(BioCombs4Nanofibres), HELLAS-CH, MIS 5002735) funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” and co-financed by Greece and the EU (European Regional Development Fund); Project (COST Action TUMIEE) supported by COST-European Cooperation in Science and Technology

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. D. Tsibidis or E. Stratakis.

Additional information

Contributors

TSIBIDIS G D conceptualized the work, developed the physical modelling, conducted the simulations, interpreted the results, and wrote the original draft. STRATAKIS E conceptualized the work, interpreted the results, and contributed to the write up.

Conflict of interest

TSIBIDIS G D and STRATAKIS E declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsibidis, G.D., Stratakis, E. Impact of substrate on opto-thermal response of thin metallic targets under irradiation with femtosecond laser pulses. J. Cent. South Univ. 29, 3410–3421 (2022). https://doi.org/10.1007/s11771-022-5169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5169-4

Key words

关键词

Navigation