Skip to main content
Log in

Enabling electrically tunable radio frequency components with advanced microfabrication and thin film techniques

利用先进微加工技术和薄膜材料实现电可调射频器件

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2022

An Erratum to this article was published on 01 October 2022

This article has been updated

Abstract

Multi-function, multiband, cost-effective, miniaturized reconfigurable radio frequency (RF) components are highly demanded in modern and future wireless communication systems. This paper discusses the needs and implementation of multiband reconfigurable RF components with microfabrication techniques and advanced materials. RF applications of fabrication methods such as surface and bulk micromachining techniques are reviewed, especially on the development of RF microelectromechanical systems (MEMS) and other tunable components. Works on the application of ferroelectric and ferromagnetic materials are investigated, which enables RF components with continuous tunability, reduced size, and enhanced performance. Methods and strategies with nano-patterning to improve high frequency characteristics of ferromagnetic thin film (e. g., ferromagnetic resonance frequency and losses) and their applications on the development of fully electrically tunable RF components are fully demonstrated.

摘要

多功能、多频段、高性价比、小型化的可重构射频器件在现代无线通信系统有着广泛应用,在未来也有极大的需求。本文介绍了基于先进薄膜材料和微加工技术设计制备的多频段、可重构射频器件。对表面微加工和体微加工技术等制造工艺的射频应用,特别是在射频微机电系统和电可调射频器件中的应用着重进行了探讨。此外,本文还综述了利用铁电和铁磁薄膜材料集成设计制备的连续可调、小型化、高性能射频器件,探讨了利用纳米图案结构工艺来增强铁磁薄膜的高频性能(例如: 铁磁共振频率和损耗)的设计方法和策略,并示范了基于此实现的全电学可调的射频器件。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. YANG Wen-li, WANG Xiao-jing, SONG Xiang-hui, et al. Design of intelligent transportation system supported by new generation wireless communication technology [J]. International Journal of Ambient Computing and Intelligence, 2018, 9(1): 78–94. DOI: https://doi.org/10.4018/978-1-5225-5643-5.ch028.

    Article  Google Scholar 

  2. FENG Xiang, FANG Yan, LIU Xiao-yu. Study of wireless communication technologies on internet of things for precision agriculture [J]. Wireless Personal Communications, 2019, 108(3): 1785–1802. DOI: https://doi.org/10.1007/s11277-019-06496-7.

    Article  Google Scholar 

  3. SANJEEVI P, PRASANNA S, KUMAR SIVA B, et al. Precision agriculture and farming using internet of things based on wireless sensor network [J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(12): e3978. DOI: https://doi.org/10.1002/ett.3978.

    Article  Google Scholar 

  4. KOS A, MILUTINOVIĆ V, UMEK A. Challenges in wireless communication for connected sensors and wearable devices used in sport biofeedback applications [J]. Future Generation Computer Systems, 2019, 92: 582–592. DOI: https://doi.org/10.1016/j.future.2018.03.032.

    Article  Google Scholar 

  5. PENG Yu-jia, WANG Teng-xing, JIANG Wei, et al. Modeling and optimization of inductively coupled wireless bio-pressure sensor system using the design of experiments method [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(1): 65–72. DOI: https://doi.org/10.1109/TCPMT.2017.2747138.

    Article  Google Scholar 

  6. ĐURIŠIĆ M P, TAFA Z, DIMIĆ G, et al. A survey of military applications of wireless sensor networks [C]//Mediterranean Conference on Embedded Computing (MECO). Bar, Montenegro: IEEE, 2012: 196–199.

    Google Scholar 

  7. SANCTIS M D, CIANCA E, ARANITI G, et al. Satellite communications supporting internet of remote things [J]. IEEE Internet of Things Journal, 2016, 3(1): 113–123. DOI: https://doi.org/10.1109/JIOT.2015.2487046.

    Article  Google Scholar 

  8. KUMAR V, BASU A, KOUL S K. Inductively tuned bulk micromachined RF MEMS switch with high isolation and improved reliability [J]. ISSS Journal of Micro and Smart Systems, 2020, 9(1): 49–53. DOI: https://doi.org/10.1007/s41683-020-00047-0.

    Article  Google Scholar 

  9. YAMANE D, SUN W, SEITA H, et al. A ku-band dual-SPDT RF-MEMS switch by double-side SOI bulk micromachining [J]. Journal of Microelectromechanical Systems, 2011, 20(5): 1211–1221. DOI: https://doi.org/10.1109/JMEMS.2011.2162490.

    Article  Google Scholar 

  10. DEMIREL K, YAZGAN E, Ş DEMIR, et al. A new temperature-tolerant RF MEMS switch structure design and fabrication for ku-band applications [J]. Journal of Microelectromechanical Systems, 2016, 25(1): 60–68. DOI: https://doi.org/10.1109/JMEMS.2015.2485659.

    Article  Google Scholar 

  11. THALLURI L N, GUHA K, SRINIVASA RAO K, et al. Perforated serpentine membrane with AlN as dielectric material shunt capacitive RF MEMS switch fabrication and characterization [J]. Microsystem Technologies, 2020, 26(6): 2029–2041. DOI: https://doi.org/10.1007/s00542-020-04755-3.

    Article  Google Scholar 

  12. DEY S, KOUL S K. Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications [J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 75–88. DOI: https://doi.org/10.1109/TMTT.2020.3034182.

    Article  Google Scholar 

  13. WANG Xin, ZHANG Bin-zhen, WANG Jun-lin, et al. 100 GHz waveguide band-pass filter employing UV-LIGA micromachining process [J]. Microelectronics Journal, 2017, 69: 101–105. DOI: https://doi.org/10.1016/j.mejo.2017.07.011.

    Article  Google Scholar 

  14. WILLKE T L, GEARHART S S. LIGA micromachined planar transmission lines and filters [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(10): 1681–1688. DOI: https://doi.org/10.1109/22.641711.

    Article  Google Scholar 

  15. MANDAL S, MANDAL S K, MAL A K, et al. Design of a super-wideband on-chip antenna with improved characteristics using bulk micromachining [J]. Microsystem Technologies, 2022, 28(4): 937–946. DOI: https://doi.org/10.1007/s00542-021-05242-z.

    Article  Google Scholar 

  16. CHANG Le, ZHANG Zhi-jun, LI Yue, et al. 60-GHz air substrate leaky-wave antenna based on MEMS micromachining technology [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(11): 1656–1662. DOI: https://doi.org/10.1109/TCPMT.2016.2616516.

    Article  Google Scholar 

  17. ZHU Zhuo, WU Jun-rui, WU Zhi-peng, et al. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces [J]. Journal of Central South University, 2021, 28(12): 3882–3906. DOI: https://doi.org/10.1007/s11771-021-4886-4.

    Article  Google Scholar 

  18. YIN Kai, WANG Ling-xiao, DENG Qin-wen, et al. Femtosecond laser thermal accumulation-triggered micro/nanostructures with patternable and controllable wettability towards liquid manipulating [J]. Nano-Micro Letters, 2022, 14(1): 97. DOI: https://doi.org/10.1007/s40820-022-00840-6.

    Article  Google Scholar 

  19. YIN Kai, WU Jun-rui, DENG Qin-wen, et al. Tailoring micro/nanostructured porous polytetrafluoroethylene surfaces for dual-reversible transition of wettability and transmittance [J]. Chemical Engineering Journal, 2022, 434: 134756. DOI: https://doi.org/10.1016/j.cej.2022.134756.

    Article  Google Scholar 

  20. PEROULIS D, PACHECO S, SARABANDI K, et al. Tunable lumped components with applications to reconfigurable MEMS filters [C]//IEEE MTT-S International Microwave Sympsoium Digest. Phoenix: IEEE, 2001: 341–344.

    Google Scholar 

  21. SAHA R, MAITY S, BHUNIA C T. Design and characterization of a tunable patch antenna loaded with capacitive MEMS switch using CSRRs structure on the patch [J]. Alexandria Engineering Journal, 2016, 55(3): 2621–2630. DOI: https://doi.org/10.1016/j.aej.2016.05.002.

    Article  Google Scholar 

  22. WANG Guo-an, POLLEY T, HUNT A, et al. A high performance tunable RF MEMS switch using barium strontium titanate (BST) dielectrics for reconfigurable antennas and phased arrays [J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4: 217–220. DOI: https://doi.org/10.1109/LAWP.2005.851065.

    Article  Google Scholar 

  23. RAHMAN B M F, DIVAN R, STAN L, et al. Tunable transmission line with nanopatterned thin films for smart RF applications [J]. IEEE Transactions on Magnetics, 2014, 50(11): 1–4. DOI: https://doi.org/10.1109/TMAG.2014.2329793.

    Article  Google Scholar 

  24. WANG Teng-xing, JIANG Wei, PENG Yu-jia, et al. Integration of ferromagnetic and ferroelectric films for fully electrically tunable RF devices [C]//IEEE Radio and Wireless Symposium (RWS). Phoenix: IEEE, 2017: 5–8.

    Google Scholar 

  25. KOVACS G T A, MALUF N I, PETERSEN K E. Bulk micromachining of silicon [J]. Proceedings of the IEEE, 1998, 86(8): 1536–1551. DOI: https://doi.org/10.1109/5.704259.

    Article  Google Scholar 

  26. HENDERSON C, ROMEO M, WANG G, et al. MEMS capacitive switch fabrication using photodefinable metal oxide dielectrics [J]. ECS Transactions, 2006, 3(10): 367–374. DOI: https://doi.org/10.1149/1.2357276.

    Article  Google Scholar 

  27. WANG Guo-an, BAIRAVASUBRAMANIAN R, PAN Bo, et al. Radiofrequency MEMS-enabled polarisation-reconfigurable antenna arrays on multilayer liquid crystal polymer [J]. IET Microwaves, Antennas & Propagation, 2011, 5(13): 1594–1599. DOI: https://doi.org/10.1049/iet-map.2011.0029.

    Article  Google Scholar 

  28. LUGO C, WANG Guo-an, PAPAPOLYMEROU J, et al. Frequency and bandwidth agile millimeter-wave filter using ferroelectric capacitors and MEMS cantilevers [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2): 376–382. DOI: https://doi.org/10.1109/TMTT.2006.889320.

    Article  Google Scholar 

  29. KINGSLEY N, PAPAPOLYMEROU J. Organic “Wafer-Scale” packaged miniature 4-bit RF MEMS phase shifter [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(3): 1229–1236. DOI: https://doi.org/10.1109/TMTT.2005.864099.

    Article  Google Scholar 

  30. PULSKAMP J S, JUDY D C, POLCAWICH R G, et al. Monolithically integrated piezomems SP2T switch and contour-mode filters [C]//IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento: IEEE, 2009: 900–903.

    Google Scholar 

  31. HE Yan-bo, BAHR B, SI M, et al. A tunable ferroelectric based unreleased RF resonator [J]. Microsystems & Nanoengineering, 2020, 6(1): 8. DOI: https://doi.org/10.1038/s41378-019-0110-1.

    Article  Google Scholar 

  32. ZHANG Han-qiao, SONG Chun-rong, WANG Ping-shan. A new method for high-frequency characterization of patterned ferromagnetic thin films [J]. Journal of Applied Physics, 2009, 105(7): 07E716. DOI: https://doi.org/10.1063/1.3076151.

    Article  Google Scholar 

  33. RAHMAN B M F, DIVAN R, ZHANG Hai-qiao, et al. High performance tunable slow wave elements enabled with nano-patterned permalloy thin film for compact radio frequency applications [J]. Journal of Applied Physics, 2014, 115(17): 17A508. DOI: https://doi.org/10.1063/1.4862847.

    Article  Google Scholar 

  34. WANG Teng-xing, RAHMAN B M F, PENG Yu-jia, et al. Arbitrary frequency tunable radio frequency bandpass filter based on nano-patterned Permalloy coplanar waveguide (invited) [J]. Journal of Applied Physics, 2015, 117(17): 172605. DOI: https://doi.org/10.1063/1.4914055.

    Article  Google Scholar 

  35. PENG Yu-jia, WANG Teng-xing, HUANG Yong-mao, et al. Electrically tunable bandpass filtering balun on engineered substrate embedded with patterned Permalloy thin film [C]//IEEE MTT-S International Microwave Symposium (IMS). San Francisco: IEEE, 2016: 1–3.

    Google Scholar 

  36. GE Jin-qun, WANG Guo-an. Electrically tunable miniaturized band-stop frequency selective surface on engineered substrate with embedded permalloy patterns [J]. AIP Advances, 2019, 9(12): 125145. DOI: https://doi.org/10.1063/1.5129035.

    Article  Google Scholar 

  37. PENG Yu-jia, RAHMAN B M F, WANG Teng-xing, et al. Engineered smart substrate with embedded patterned permalloy thin film for radio frequency applications [J]. Journal of Applied Physics, 2015, 117(17): 17B709. DOI: https://doi.org/10.1063/1.4908299.

    Article  Google Scholar 

  38. WANG Teng-xing, PENG Yu-jia, JIANG Wei, et al. High-performance electrically tunable RF phase shifter with the application of PZT and permalloy thin-film patterns [J]. IEEE Transactions on Magnetics, 2015, 51(11): 1–4. DOI: https://doi.org/10.1109/TMAG.2015.2446520.

    Article  Google Scholar 

  39. WANG Teng-xing, PENG Yu-jia, JIANG Wei, et al. Integrating nanopatterned ferromagnetic and ferroelectric thin films for electrically tunable RF applications [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(2): 504–512. DOI: https://doi.org/10.1109/TMTT.2016.2616869.

    Article  Google Scholar 

  40. WANG Teng-xing, JIANG Wei, DIVAN R, et al. Novel electrically tunable microwave solenoid inductor and compact phase shifter utilizing permaloy and PZT thin films [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(10): 3569–3577. DOI: https://doi.org/10.1109/TMTT.2017.2731765.

    Article  Google Scholar 

Download references

Funding

Projects(1253929, 1910853) supported by the National Science Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-an Wang  (王国安).

Additional information

Contributors

ZHANG Ying-cong drafted the manuscript. GE Jin-qun edited the manuscript and implemented partial of the research work. WANG Guo-an developed and managed the research and edited the manuscript.

Conflict of interest

ZHANG Ying-cong, GE Jin-qun, and WANG Guo-an declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yc., Ge, Jq. & Wang, Ga. Enabling electrically tunable radio frequency components with advanced microfabrication and thin film techniques. J. Cent. South Univ. 29, 3248–3260 (2022). https://doi.org/10.1007/s11771-022-5165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5165-8

Key words

关键词

Navigation