Skip to main content
Log in

Recent progress of fiber-shaped batteries towards wearable application

纤维型电池面向可穿戴应用发展方向的最新进展

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging, health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fiber-shaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture, the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices. Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries, we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries.

摘要

现代社会对即时通讯、健康监测和智能办公处理的大量需求,使得便携式或可穿戴设备蓬勃发展,迫切需要更小巧、灵活、轻便的电源系统。近年来,纤维型电池由于其1D 结构可以适应各种变形,并集成到织物和其他柔性设备中,具有极大的潜力满足柔性可穿戴电子设备的需求。针对其性能和可穿戴应用的大量研究极大地促进了该领域的快速发展。本文首先综述了纤维型电池近年来的发展状况,并对纤维型电池的结构和材料进行了讨论。然后,探讨了电池的柔韧性及其面向可穿戴的应用前景。最后,提出了该领域仍存在的一些问题和挑战,以期提出纤维型电池进一步发展的研究方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAI Zhi-sheng, ZHANG Nan-nan, SUN Peng, et al. Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage [J]. ACS Nano, 2016, 10(10): 9201–9207. DOI: https://doi.org/10.1021/acsnano.6b05293.

    Article  Google Scholar 

  2. DONG Kai, PENG Xiao, WANG Zhong-lin. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence [J]. Advanced Materials, 2020, 32(5): 1902549. DOI: https://doi.org/10.1002/adma.201902549.

    Article  Google Scholar 

  3. NASRELDIN M, de MULATIER S, DELATTRE R, et al. Flexible and stretchable microbatteries for wearable technologies [J]. Advanced Materials Technologies, 2020, 5(12): 2000412. DOI: https://doi.org/10.1002/admt.202000412.

    Article  Google Scholar 

  4. LIAO Meng, YE Lei, ZHANG Ye, et al. The recent advance in fiber-shaped energy storage devices [J]. Advanced Electronic Materials, 2019, 5(1): 1800456. DOI: https://doi.org/10.1002/aelm.201800456.

    Article  Google Scholar 

  5. AMIN K, MENG Qing-hai, AHMAD A, et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries [J]. Advanced Materials, 2018, 30(4): 1703868. DOI: https://doi.org/10.1002/adma.201703868.

    Article  Google Scholar 

  6. SUN Hao, YOU Xiao, DENG Jue, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices [J]. Advanced Materials, 2014, 26(18): 2868–2873. DOI: https://doi.org/10.1002/adma.201305188.

    Article  Google Scholar 

  7. REN Jing, LI Li, CHEN Chen, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery [J]. Advanced Materials, 2013, 25(8): 1155–1159. DOI: https://doi.org/10.1002/adma.201203445.

    Article  Google Scholar 

  8. LI Qin, ARDEBILI H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte [J]. Journal of Power Sources, 2016, 303: 17–21. DOI: https://doi.org/10.1016/j.jpowsour.2015.10.099.

    Article  Google Scholar 

  9. GOCKELN M, GLENNEBERG J, BUSSE M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries [J]. Nano Energy, 2018, 49: 564–573. DOI: https://doi.org/10.1016/j.nanoen.2018.05.007.

    Article  Google Scholar 

  10. NING Guo-qing, XU Cheng-gen, CAO Yan-ming, et al. Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries [J]. J Mater Chem A, 2013, 1(2): 408–414. DOI: https://doi.org/10.1039/c2ta00140c.

    Article  Google Scholar 

  11. WANG Ke, LUO Shu, WU Yang, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries [J]. Advanced Functional Materials, 2013, 23(7): 846–853. DOI: https://doi.org/10.1002/adfm.201202412.

    Article  Google Scholar 

  12. SHAO Wen-yu, TEBYETEKERWA M, MARRIAM I, et al. Polyester@MXene nanofibers-based yarn electrodes [J]. Journal of Power Sources, 2018, 396: 683–690. DOI: https://doi.org/10.1016/j.jpowsour.2018.06.084.

    Article  Google Scholar 

  13. CHEN Tao, QIU Long-bin, YANG Zhi-bin, et al. An integrated “energy wire” for both photoelectric conversion and energy storage [J]. Angewandte Chemie International Edition, 2012, 51(48): 11977–11980. DOI: https://doi.org/10.1002/anie.201207023.

    Article  Google Scholar 

  14. GAO Yuan, XIE Chuan, ZHENG Zi-jian. Textile composite electrodes for flexible batteries and supercapacitors: Opportunities and challenges [J]. Advanced Energy Materials, 2020, 11(3): 2002838. DOI: https://doi.org/10.1002/aenm.202002838.

    Article  Google Scholar 

  15. MA Wu-jun, ZHANG Yang, PAN Shao-wu, et al. Smart fibers for energy conversion and storage [J]. Chemical Society Reviews, 2021, 50(12): 7009–7061. DOI: https://doi.org/10.1039/d0cs01603a.

    Article  Google Scholar 

  16. KWON Y H, WOO S W, JUNG H R, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes [J]. Advanced Materials, 2012, 24(38): 5192–5197. DOI: https://doi.org/10.1002/adma.201202196.

    Article  Google Scholar 

  17. PARK J, PARK M, NAM G, et al. All-solid-state cable-type flexible zinc-air battery [J]. Advanced Materials, 2015, 27(8): 1396–1401. DOI: https://doi.org/10.1002/adma.201404639.

    Article  Google Scholar 

  18. FANG Xin, WENG Wei, REN Jing, et al. A cable-shaped lithium sulfur battery [J]. Advanced Materials, 2016, 28(3): 491–496. DOI: https://doi.org/10.1002/adma.201504241.

    Article  Google Scholar 

  19. ZHANG Ye, WANG Lie, GUO Zi-yang, et al. High-performance lithium-air battery with a coaxial-fiber architecture [J]. Angewandte Chemie International Edition, 2016, 55(14): 4487–4491. DOI: https://doi.org/10.1002/anie.201511832.

    Article  Google Scholar 

  20. XU Yi-fan, ZHAO Yang, REN Jing, et al. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance [J]. Angewandte Chemie International Edition, 2016, 55(28): 7979–7982. DOI: https://doi.org/10.1002/anie.201601804.

    Article  Google Scholar 

  21. ZHANG Ye, WANG Yu-hang, WANG Lie, et al. A fiber-shaped aqueous lithium ion battery with high power density [J]. Journal of Materials Chemistry A, 2016, 4(23): 9002–9008. DOI: https://doi.org/10.1039/c6ta03477b.

    Article  Google Scholar 

  22. LI Hong-fei, LIU Zhuo-xin, LIANG Guo-jin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte [J]. ACS Nano, 2018, 12(4): 3140–3148. DOI: https://doi.org/10.1021/acsnano.7b09003.

    Article  Google Scholar 

  23. LIU Gui-cheng, KIM J Y, WANG Man-xiang, et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium-indium liquid metal-air battery operated at room temperature [J]. Advanced Energy Materials, 2018, 8(16): 1703652. DOI: https://doi.org/10.1002/aenm.201703652.

    Article  Google Scholar 

  24. GUO Zhao-wei, ZHAO Yang, DING Yu-xue, et al. Multifunctional flexible aqueous sodium-ion batteries with high safety [J]. Chem, 2017, 3(2): 348–362. DOI: https://doi.org/10.1016/j.chempr.2017.05.004.

    Article  Google Scholar 

  25. ZHOU Jing-wen, LI Xue-lian, YANG Chao, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency [J]. Advanced Materials, 2019, 31(3): 1804439. DOI: https://doi.org/10.1002/adma.201804439.

    Article  Google Scholar 

  26. MO Fu-nian, LIANG Guo-jin, HUANG Zhao-dong, et al. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties [J]. Advanced Materials, 2020, 32(5): 1902151. DOI: https://doi.org/10.1002/adma.201902151.

    Article  Google Scholar 

  27. REN Jing, ZHANG Ye, BAI Wen-yu, et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance [J]. Angewandte Chemie, 2014, 126(30): 7998–8003. DOI: https://doi.org/10.1002/ange.201402388.

    Article  Google Scholar 

  28. ZHANG Ye, ZHAO Yang, CHENG Xun-liang, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers [J]. Angewandte Chemie International Edition, 2015, 54(38): 11177–11182. DOI: https://doi.org/10.1002/anie.201506142.

    Article  Google Scholar 

  29. WU Zi-ping, LIU Kai-xi, LV Chao, et al. Ultrahigh-energy density lithium-ion cable battery based on the carbonnanotube woven macrofilms [J]. Small, 2018, 14(22): 1800414. DOI: https://doi.org/10.1002/smll.201800414.

    Article  Google Scholar 

  30. WANG Yi-bo, CHEN Chao-ji, XIE Hua, et al. 3D-printed allfiber Li-ion battery toward wearable energy storage [J]. Advanced Functional Materials, 2017, 27(43): 1703140. DOI: https://doi.org/10.1002/adfm.201703140.

    Article  Google Scholar 

  31. ZHANG Qi-chong, ZHOU Zhen-yu, PAN Zheng-hui, et al. All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device [J]. Advanced Science, 2018, 5(12): 1801462. DOI: https://doi.org/10.1002/advs.201801462.

    Article  Google Scholar 

  32. LI Qiu-long, ZHANG Qi-chong, LIU Cheng-long, et al. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core — shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(21): 12997–13006. DOI: https://doi.org/10.1039/c9ta03330k.

    Article  Google Scholar 

  33. HUANG Yan, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability [J]. ACS Nano, 2017, 11(9): 8953–8961. DOI: https://doi.org/10.1021/acsnano.7b03322.

    Article  Google Scholar 

  34. CHEN Xu, ZHONG Cheng, LIU Bin, et al. Atomic layer Co3O4 nanosheets: The key to knittable Zn-air batteries [J]. Small, 2018, 14(43): 1702987. DOI: https://doi.org/10.1002/smll.201702987.

    Article  Google Scholar 

  35. ZHAI Sheng-li, WANG Na, TAN Xue-hai, et al. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery [J]. Advanced Functional Materials, 2021, 31(13): 2008894. DOI: https://doi.org/10.1002/adfm.202008894.

    Article  Google Scholar 

  36. ZHANG Ye, BAI Wen-yu, CHENG Xun-liang, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs [J]. Angewandte Chemie International Edition, 2014, 53(52): 14564–14568. DOI: https://doi.org/10.1002/anie.201409366.

    Article  Google Scholar 

  37. HOSHIDE T, ZHENG Yuan-chuan, HOU Jun-yu, et al. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide [J]. Nano Letters, 2017, 17(6): 3543–3549. DOI: https://doi.org/10.1021/acs.nanolett.7b00623.

    Article  Google Scholar 

  38. WANG Ya-lei, ZHENG Yuan-chuan, ZHAO Jiu-peng, et al. Assembling free-standing and aligned tungstate/MXene fiber for flexible lithium and sodium-ion batteries with efficient pseudocapacitive energy storage [J]. Energy Storage Materials, 2020, 33: 82–87. DOI: https://doi.org/10.1016/j.ensm.2020.06.018.

    Article  Google Scholar 

  39. CHEN Shao-hua, QIU Ling, CHENG Hui-ming. Carbon-based fibers for advanced electrochemical energy storage devices [J]. Chemical Reviews, 2020, 120(5): 2811–2878. DOI: https://doi.org/10.1021/acs.chemrev.9b00466.

    Article  Google Scholar 

  40. ZHAO Xiao-huan, E Jia-qiang, WU Gang, et al. A review of studies using graphenes in energy conversion, energy storage and heat transfer development [J]. Energy Conversion and Management, 2019, 184: 581–599. DOI: https://doi.org/10.1016/j.enconman.2019.01.092.

    Article  Google Scholar 

  41. XU Zhen, GAO Chao. Graphene chiral liquid crystals and macroscopic assembled fibres [J]. Nature Communications, 2011, 2: 571. DOI: https://doi.org/10.1038/ncomms1583.

    Article  Google Scholar 

  42. XU Zhen, SUN Hai-yan, ZHAO Xiao-li, et al. Ultrastrong fibers assembled from giant graphene oxide sheets [J]. Advanced Materials, 2013, 25(2): 188–193. DOI: https://doi.org/10.1002/adma.201203448.

    Article  Google Scholar 

  43. RAO Jiang-yu, LIU Ni-shuang, ZHANG Zhi, et al. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability [J]. Nano Energy, 2018, 51: 425–433. DOI: https://doi.org/10.1016/j.nanoen.2018.06.067.

    Article  Google Scholar 

  44. RAO Jiang-yu, LIU Ni-shuang, LI Lu-ying, et al. A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers [J]. RSC Advances, 2017, 7(43): 26601–26607. DOI: https://doi.org/10.1039/c7ra02051a.

    Article  Google Scholar 

  45. ZENG Yin-xiang, MENG Yue, LAI Zheng-zhe, et al. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode [J]. Advanced Materials, 2017, 29(44): 1702698. DOI: https://doi.org/10.1002/adma.201702698.

    Article  Google Scholar 

  46. LI Ming, MENG Jia-shen, LI Qi, et al. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-co batteries [J]. Advanced Functional Materials, 2018, 28(32): 1802016. DOI: https://doi.org/10.1002/adfm.201802016.

    Article  Google Scholar 

  47. ZENG Sha, TONG Xiao, ZHOU Su-sheng, et al. All-in-one bifunctional oxygen electrode films for flexible Zn-air batteries [J]. Small, 2018, 14(48): 1803409. DOI: https://doi.org/10.1002/smll.201803409.

    Article  Google Scholar 

  48. SONG H, JEON S Y, JEONG Y. Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir [J]. Carbon, 2019, 147: 441–450. DOI: https://doi.org/10.1016/j.carbon.2019.02.081.

    Article  Google Scholar 

  49. ZHENG Shuang-hao, WANG Hui, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems [J]. Advanced Materials, 2021, 33(10): 2005449. DOI: https://doi.org/10.1002/adma.202005449.

    Article  Google Scholar 

  50. LUO Yong-feng, ZHANG Ye, ZHAO Yang, et al. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(34): 17553–17557. DOI: https://doi.org/10.1039/c5ta04457j.

    Article  Google Scholar 

  51. CHEN Qi, SUN Shuo, ZHAI Teng, et al. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery [J]. Advanced Energy Materials, 2018, 8(19): 1800054. DOI: https://doi.org/10.1002/aenm.201800054.

    Article  Google Scholar 

  52. WANG Ya-lei, ZHENG Yuan-chuan, ZHAO Jiu-peng, et al. Flexible fiber-shaped lithium and sodium-ion batteries with exclusive ion transport channels and superior pseudocapacitive charge storage [J]. Journal of Materials Chemistry A, 2020, 8(22): 11155–11164. DOI: https://doi.org/10.1039/d0ta01908a.

    Article  Google Scholar 

  53. WANG Yu-shu, WANG Xu-sheng, XUE Mian-qi, et al. All-in-One ENERGISER design: Smart liquid metal-air battery [J]. Chemical Engineering Journal, 2021, 409: 128160. DOI: https://doi.org/10.1016/j.cej.2020.128160.

    Article  Google Scholar 

  54. HE Ji-qing, LU Chen-hao, JIANG Hai-bo, et al. Scalable production of high-performing woven lithium-ion fibre batteries [J]. Nature, 2021, 597(7874): 57–63. DOI: https://doi.org/10.1038/s41586-021-03772-0.

    Article  Google Scholar 

  55. ZHANG Ye, BAI Wen-yu, REN Jing, et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber [J]. Journal of Materials Chemistry A, 2014, 2(29): 11054. DOI: https://doi.org/10.1039/c4ta01878h.

    Article  Google Scholar 

  56. LIN Hui-juan, WENG Wei, REN Jing, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery [J]. Advanced Materials, 2014, 26(8): 1217–1222. DOI: https://doi.org/10.1002/adma.201304319.

    Article  Google Scholar 

  57. RAO Jiang-yu, LIU Ni-shuang, LI Lu-ying, et al. A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers [J]. RSC Advances, 2017, 7(43): 26601–26607. DOI: https://doi.org/10.1039/c7ra02051a.

    Article  Google Scholar 

  58. JIN Zhao-yu, LI Pan-pan, JIN Yong, et al. Superficial-defect engineered nickel/iron oxide nanocrystals enable high-efficient flexible fiber battery [J]. Energy Storage Materials, 2018, 13: 160–167. DOI: https://doi.org/10.1016/j.ensm.2018.01.010.

    Article  Google Scholar 

  59. LI Qiu-long, ZHANG Qi-chong, LIU Cheng-long, et al. Flexible all-solid-state fiber-shaped Ni — Fe batteries with high electrochemical performance [J]. Journal of Materials Chemistry A, 2019, 7(2): 520–530. DOI: https://doi.org/10.1039/c8ta09822k.

    Article  Google Scholar 

  60. HE Bing, ZHOU Zhen-yu, MAN Ping, et al. V2O5 nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(21): 12979–12986. DOI: https://doi.org/10.1039/c9ta01164a.

    Article  Google Scholar 

  61. KOU Wei-jie, LV Rui-xin, ZUO Sheng-wu, et al. Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries [J]. Journal of Membrane Science, 2021, 618: 118702. DOI: https://doi.org/10.1016/j.memsci.2020.118702.

    Article  Google Scholar 

  62. PAN Jian, LI Hou-pu, SUN Hao, et al. A lithium-air battery stably working at high temperature with high rate performance [J]. Small, 2018, 14(6): 1703454. DOI: https://doi.org/10.1002/smll.201703454.

    Article  Google Scholar 

  63. LI Bo-yu, SU Qing-mei, YU Lin-tao, et al. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries [J]. Journal of Membrane Science, 2021, 618: 118734. DOI: https://doi.org/10.1016/j.memsci.2020.118734.

    Article  Google Scholar 

  64. GUAN Cao, SUMBOJA A, ZANG Wen-jie, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries [J]. Energy Storage Materials, 2019, 16: 243–250. DOI: https://doi.org/10.1016/j.ensm.2018.06.001.

    Article  Google Scholar 

  65. ZHANG Qi-chong, LI Chao-wei, LI Qiu-long, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery [J]. Nano Letters, 2019, 19(6): 4035–4042. DOI: https://doi.org/10.1021/acs.nanolett.9b01403.

    Article  Google Scholar 

  66. YADAV A, DE B, SINGH S K, et al. Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics [J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7974–7980. DOI: https://doi.org/10.1021/acsami.8b20233.

    Article  Google Scholar 

  67. YIN Yan-bin, YANG Xiao-yang, CHANG Zhi-wen, et al. A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator [J]. Advanced Materials, 2018, 30(1): 1703791. DOI: https://doi.org/10.1002/adma.201703791.

    Article  Google Scholar 

  68. WANG Chang-feng, HE Tao, CHENG Jian-li, et al. Bioinspired interface design of sewable, wearable, and washable fiber zinc batteries for wearable power textiles [J]. Advanced Functional Materials, 2020, 30(42): 2004430. DOI: https://doi.org/10.1002/adfm.202004430.

    Article  Google Scholar 

  69. WANG Lie, PAN Jian, ZHANG Ye, et al. A Li-air battery with ultralong cycle life in ambient air [J]. Advanced Materials, 2018, 30(3): 1704378. DOI: https://doi.org/10.1002/adma.201704378.

    Article  Google Scholar 

  70. ZHANG Ye, JIAO Yi-ding, LU Li-jun, et al. An ultraflexible silicon-oxygen battery fiber with high energy density [J]. Angewandte Chemie International Edition, 2017, 56(44): 13741–13746. DOI: https://doi.org/10.1002/anie.201707840.

    Article  Google Scholar 

  71. NAGARAJU G, SEKHAR S C, RAMULU B, et al. Multicomponent architectured battery-type flexible yarns for high-performance wearable supercapatteries [J]. Chemical Engineering Journal, 2021, 411: 128479. DOI: https://doi.org/10.1016/j.cej.2021.128479.

    Article  Google Scholar 

  72. WANG Lie, FU Xue-mei, HE Ji-qing, et al. Application challenges in fiber and textile electronics [J]. Advanced Materials, 2020, 32(5): 1901971. DOI: https://doi.org/10.1002/adma.201901971.

    Article  Google Scholar 

  73. SHI Xiang, ZUO Yong, ZHAI Peng, et al. Large-area display textiles integrated with functional systems [J]. Nature, 2021, 591(7849): 240–245. DOI: https://doi.org/10.1038/s41586-021-03295-8.

    Article  Google Scholar 

  74. HAN Jing, XU Chong-yang, ZHANG Jin-tao, et al. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization [J]. ACS Nano, 2021, 15(1): 1597–1607. DOI: https://doi.org/10.1021/acsnano.0c09146.

    Article  Google Scholar 

  75. LEVITT A, HEGH D, PHILLIPS P, et al. 3D knitted energy storage textiles using MXene-coated yarns [J]. Materials Today, 2020, 34: 17–29. DOI: https://doi.org/10.1016/j.mattod.2020.02.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Yi-bo and ZHANG Hao provided the concept and edited the draft of the manuscript. LI Yuan conducted the literature review and wrote the first draft of the manuscript. QIU Jing-yi, CAO Gaoping, ZHAO Peng-cheng, CHEN Long, MA Jun, CHEN Xi-bang, and LIN Zhi-hong edited the draft of the manuscript.

Corresponding authors

Correspondence to Jing-yi Qiu  (邱景义) or Gao-ping Cao  (曹高萍).

Additional information

Conflict of interest

LI Yuan, WANG Yi-bo, ZHANG Hao, ZHAO Peng-cheng, CHEN Long, MA Jun, CHEN Xi-bang, LIN Zhi-hong, QIU Jing-yi, and CAO Gao-ping declare that they have no conflict of interest.

Foundation item: Project(2016YFB0901503) supported by National Key Research and Development Program of China; Projects (22075320, 21875284) supported by the National Natureal Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Yb., Zhang, H. et al. Recent progress of fiber-shaped batteries towards wearable application. J. Cent. South Univ. 29, 2837–2856 (2022). https://doi.org/10.1007/s11771-022-5131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5131-5

Key words

关键词

Navigation