Skip to main content
Log in

Effect of double ageing on performance and establishment of prediction model for 6005 aluminum alloy

双级时效对6005铝合金性能的影响与预测模型的建立

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 °C and 200 °C pre-ageing, which were in good agreement with the model.

摘要

本文对6005挤压铝合金进行双级时效热处理, 研究6005铝合金在不同时效制度下的组织演变规律和力学性能, 建立了预时效制度对6005铝合金力学性能的预测模型. 研究结果表明, 在较高的预时效温度和较短的预时效时间状态下, 6005铝合金的性能优于T6态. TEM观察结果表明, 在160 °C和200 °C预时效状态下, 合金存在较高的位错密度和析出相密度, 与模型预测结果吻合.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. CHEN Hui-chi, PINKERTON A J, LI Lin, et al. Gap-free fibre laser welding of Zn-coated steel on Al alloy for lightweight automotive applications [J]. Materials & Design, 2011, 32(2): 495–504. DOI: https://doi.org/10.1016/j.matdes.2010.08.034.

    Article  Google Scholar 

  2. CARVALHO U T F, CAMPILHO R D S G. Application of the direct method for cohesive law estimation applied to the strength prediction of double-lap joints [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 140–148. DOI: https://doi.org/10.1016/j.tafmec.2016.08.018.

    Article  Google Scholar 

  3. CHEN Cun-guang, HAN Wei-hao, QI Miao, et al. Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion [J]. Journal of Central South University, 2021, 28(4): 1195–1205. DOI: https://doi.org/10.1007/s11771-021-4669-y.

    Article  Google Scholar 

  4. JIA Qing-bo, ROMETSCH P, KÜRNSTEINER P, et al. Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms [J]. Acta Materialia, 2019, 171: 108–118. DOI: https://doi.org/10.1016/j.actamat.2019.04.014.

    Article  Google Scholar 

  5. ZHA Min, YU Zhi-yuan, QIAN Feng, et al. Achieving dispersed fine soft Bi particles and grain refinement in a hypermonotectic Al−Bi alloy by severe plastic deformation and annealing [J]. Scripta Materialia, 2018, 155: 124–128. DOI: https://doi.org/10.1016/j.scriptamat.2018.06.029.

    Article  Google Scholar 

  6. YANG Xiao-kun, XIONG Bai-qing, LI Xi-wu, et al. Effect of Li addition on mechanical properties and ageing precipitation behavior of extruded Al−3.0Mg−0.5Si alloy [J]. Journal of Central South University, 2021, 28(9): 2636–2646. DOI: https://doi.org/10.1007/s11771-021-4798-3.

    Article  Google Scholar 

  7. XIA Peng, LIU Zhi-yi, BAI Song, et al. Enhanced fatigue crack propagation resistance in a superhigh strength Al−Zn−Mg-Cu alloy by modifying RRA treatment [J]. Materials Characterization, 2016, 118: 438–445. DOI: https://doi.org/10.1016/j.matchar.2016.06.023.

    Article  Google Scholar 

  8. POURNAZARI S, DEEN K M, MAIJER D M, et al. Effect of retrogression and re-aging (RRA) heat treatment on the corrosion behavior of B206 aluminum-copper casting alloy [J]. Materials and Corrosion, 2018, 69(8): 998–1015. DOI: https://doi.org/10.1002/maco.201709925.

    Article  Google Scholar 

  9. MAYÉN J, ABÚNDEZ A, PORCAYO-CALDERÓN J, et al. Part 1: Design and development of new sustainable coatings applied on aluminium 6061 alloy-RRA heat treated for engineering applications [J]. Surface and Coatings Technology, 2017, 328: 488–498. DOI: https://doi.org/10.1016/j.surfcoat.2017.09.012.

    Article  Google Scholar 

  10. MAYÉN J, ABÚNDEZ A, PEREYRA I, et al. Correlation between mechanical properties and corrosion behavior of an Al6061 alloy coated by 5% CH3COOH pressurized steam and RRA heat treated [J]. Surface and Coatings Technology, 2017, 309: 344–354. DOI: https://doi.org/10.1016/j.surfcoat.2016.11.053.

    Article  Google Scholar 

  11. SU R M, QU Y D, LI R D, et al. Influence of RRA treatment on the microstructure and stress corrosion cracking behavior of the spray-formed 7075 alloy [J]. Materials Science, 2015, 51(3): 372–380. DOI: https://doi.org/10.1007/s11003-015-9851-7.

    Article  Google Scholar 

  12. CHANG C S T, WIELER I, WANDERKA N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al−0.44 at% Mg−0.38 at% Si alloy [J]. Ultramicroscopy, 2009, 109(5): 585–592. DOI: https://doi.org/10.1016/j.ultramic.2008.12.002.

    Article  Google Scholar 

  13. ABÚNDEZ A, PEREYRA I, CAMPILLO B, et al. Improvement of ultimate tensile strength by artificial ageing and retrogression treatment of aluminium alloy 6061 [J]. Materials Science and Engineering A, 2016, 668: 201–207. DOI: https://doi.org/10.1016/j.msea.2016.05.062.

    Article  Google Scholar 

  14. ENGLER O, MARIOARA C D, ARUGA Y, et al. Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al−Mg−Si alloy AA 6016 [J]. Materials Science and Engineering A, 2019, 759: 520–529. DOI: https://doi.org/10.1016/j.msea.2019.05.073.

    Article  Google Scholar 

  15. YIN De-yan, XIAO Qiao, CHEN Yu-qiang, et al. Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al−Mg−Si−Cu alloy [J]. Materials & Design, 2016, 95: 329–339. DOI: https://doi.org/10.1016/j.matdes.2016.01.119.

    Article  Google Scholar 

  16. JIN Shuo-xun, NGAI T, LI Lie-jun, et al. Influence of natural aging and pre-treatment on the precipitation and age-hardening behavior of Al−1.0Mg−0.65Si−0.24Cu alloy [J]. Journal of Alloys and Compounds, 2018, 742: 852–859. DOI: https://doi.org/10.1016/j.jallcom.2017.10.005.

    Article  Google Scholar 

  17. GONG Wen-yuan, XIE Meng-jing, ZHANG Ji-shan. Giant bake hardening response of multi-scale precipitation strengthened Al−Mg−Si−Cu−Zn alloy via pre-aging treatments [J]. Materials Characterization, 2021, 181: 111464. DOI: https://doi.org/10.1016/j.matchar.2021.111464.

    Article  Google Scholar 

  18. BIROL Y. Pre-aging to improve bake hardening in a twin-roll cast Al−Mg−Si alloy [J]. Materials Science and Engineering A, 2005, 391(1, 2): 175–180. DOI: https://doi.org/10.1016/j.msea.2004.08.069.

    Article  Google Scholar 

  19. DING Li-peng, HE Yang, WEN Zhang, et al. Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times [J]. Journal of Alloys and Compounds, 2015, 647: 238–244. DOI: https://doi.org/10.1016/j.jallcom.2015.05.188.

    Article  Google Scholar 

  20. GHOSH K S, DAS K, CHATTERJEE U K. Studies of microstructural changes upon retrogression and reaging (RRA) treatment to 8090 Al−Li−Cu−Mg−Zr alloy [J]. Materials Science and Technology, 2004, 20(7): 825–834. DOI: https://doi.org/10.1179/026708304225019650.

    Article  Google Scholar 

  21. WANG Yi-chang, CAO Ling-fei, WU Xiao-dong, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085 [J]. Journal of Alloys and Compounds, 2020, 814: 152264. DOI: https://doi.org/10.1016/j.jallcom.2019.152264.

    Article  Google Scholar 

  22. FENG D, ZHANG X M, LIU S D, et al. The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055 [J]. Materials Science and Engineering A, 2013, 588: 34–42. DOI: https://doi.org/10.1016/j.msea.2013.09.011.

    Article  Google Scholar 

  23. NANDANA M S, UDAYA BHAT K, MANJUNATHA C M. Effect of retrogression heat treatment time on microstructure and mechanical properties of AA7010 [J]. Journal of Materials Engineering and Performance, 2018, 27(4): 1628–1634. DOI: https://doi.org/10.1007/s11665-018-3268-z.

    Article  Google Scholar 

  24. ÖZER G, KARAASLAN A. Effect of RRA heat treatment on corrosion and mechanical properties of AA7075 [J]. Materials and Corrosion, 2019, 70(11): 2064–2072. DOI: https://doi.org/10.1002/maco.201910955.

    Article  Google Scholar 

  25. WANG Yi-chang, CAO Ling-fei, WU Xiao-dong, et al. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085 [J]. Journal of Alloys and Compounds, 2020, 814: 152264. DOI: https://doi.org/10.1016/j.jallcom.2019.152264.

    Article  Google Scholar 

  26. ÖZER G, KISASÖZ A, KARAASLAN A. Investigation of the relationship between intergranular corrosion and retrogression and reaging in the AA6063 [J]. Materials and Corrosion, 2019, 70(12): 2256–2265. DOI: https://doi.org/10.1002/maco.201911100.

    Article  Google Scholar 

  27. REIS B P, LOPES M M, GARCIA A, et al. The correlation of microstructure features, dry sliding wear behavior, hardness and tensile properties of Al−2wt%Mg−Zn alloys [J]. Journal of Alloys and Compounds, 2018, 764: 267–278. DOI: https://doi.org/10.1016/j.jallcom.2018.06.075.

    Article  Google Scholar 

  28. ASHRAFIZADEH S M, EIVANI A R. Correlative evolution of microstructure, particle dissolution, hardness and strength of ultrafine grained AA6063 alloy during annealing [J]. Materials Science and Engineering A, 2015, 644: 284–296. DOI: https://doi.org/10.1016/j.msea.2015.06.074.

    Article  Google Scholar 

  29. GRONG Ø. Metallurgical modelling of welding [J]. Materials Characterization, 1995, 34(4): 289. DOI: https://doi.org/10.1016/1044-5803(95)80084-0.

    Google Scholar 

  30. TIRYAKIOĞLU M, ROBINSON J S, SALAZAR-GUAPURICHE M A, et al. Hardness-strength relationships in the aluminum alloy 7010 [J]. Materials Science and Engineering A, 2015, 631: 196–200. DOI: https://doi.org/10.1016/j.msea.2015.02.049.

    Article  Google Scholar 

  31. DUNSTAN D J, BUSHBY A J. Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size [J]. International Journal of Plasticity, 2014, 53: 56–65. DOI: https://doi.org/10.1016/j.ijplas.2013.07.004.

    Article  Google Scholar 

  32. LIU Hong, ZHAO Gang, LIU Chun-ming, et al. Effect of Mn addition on microstructures and properties of Al−Mg−Si−Cu system alloys for automotive body sheets [J]. Journal of Northeastern University, 2005, 26(4): 245–248. (in Chinese)

    Google Scholar 

  33. MAISONNETTE D, SUERY M, NELIAS D, et al. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminum alloy [J]. Materials Science and Engineering A, 2011, 528(6): 2718–2724. DOI: https://doi.org/10.1016/j.msea.2010.12.011.

    Article  Google Scholar 

  34. SUNDE J K, LU Feng, MARIOARA C D, et al. Linking mechanical properties to precipitate microstructure in three Al−Mg−Si(−Cu) alloys [J]. Materials Science and Engineering A, 2021, 807: 140862. DOI: https://doi.org/10.1016/j.msea.2021.140862.

    Article  Google Scholar 

  35. NINIVE P H, STRANDLIE A, GULBRANDSEN-DAHL S, et al. Detailed atomistic insight into the β″ phase in Al−Mg−Si alloys [J]. Acta Materialia, 2014, 69: 126–134. DOI: https://doi.org/10.1016/j.actamat.2014.01.052.

    Article  Google Scholar 

  36. VISSERS R, VAN HUIS M A, JANSEN J, et al. The crystal structure of the β′ phase in Al−Mg−Si alloys [J]. Acta Materialia, 2007, 55(11): 3815–3823. DOI: https://doi.org/10.1016/j.actamat.2007.02.032.

    Article  Google Scholar 

  37. CAO Ling-yong, GUO Ming-xing, CUI Hua, et al. Study on the kinetics of phase transformation βα in the homogeneous heat treatment of Al−Mg−Si series alloys [J]. Acta Metallurgica Sinica, 2013, 49(4): 428. DOI: https://doi.org/10.3724/sp.j.1037.2012.00608.

    Article  Google Scholar 

  38. WANG Xiao-na, HAN Li-zhan, GU Jian-feng. Aging precipitation kinetics and strengthening models for aluminum alloys [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10): 2754–2768. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2013.10.005. (in Chinese)

    Google Scholar 

  39. MYHR O R, GRONG Ø, ANDERSEN S J. Modelling of the age hardening behaviour of Al−Mg−Si alloys [J]. Acta Materialia, 2001, 49(1): 65–75. DOI: https://doi.org/10.1016/S1359-6454(00)00301-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HUANG Yuan-chun provided the concept and edited the draft of manuscript. WANG Xu-cheng conducted the literature review and wrote the first draft of the manuscript. ZHANG Li-hua, ZHANG Yun and HUANG Shi-ta analyzed the measured data and edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yuan-chun Huang  (黄元春).

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Projects(51575539, U1837207) supported by the National Natural Science Foundation of China; Project(2020RC2002) supported by the Science and Technology Innovation Program of Hunan Province, China; Project(2021JJ40774) supported by Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xc., Huang, Yc., Zhang, Lh. et al. Effect of double ageing on performance and establishment of prediction model for 6005 aluminum alloy. J. Cent. South Univ. 29, 973–985 (2022). https://doi.org/10.1007/s11771-022-4976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4976-y

Key words

关键词

Navigation