Skip to main content
Log in

An ultrahigh-voltage 4H-SiC merged PiN Schottky diode with three-dimensional p-type buried layers

一种具有三维p型埋层的超高压4H-SiC混合PiN肖特基二极管

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the modern society, there is a strong demand for semiconductor chips, and the 4H polytype silicon carbide (4H-SiC) power device is a promising candidate for the next generation semiconductor chip, which can be used in various power electronic systems. In order to improve the performance of the 4H-SiC power device, a novel ultrahigh-voltage (UHV) 4H-SiC merged p-type/intrinsic/n-type (PiN) Schottky (MPS) diode with three-dimensional (3D) p-type buried layers (PBL) (3D-PBL MPS) is proposed and investigated by numerical simulation. The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL (PBL-free MPS). However, when the 3D-PBL MPS is in the reverse blocking state, the 3D PBL can transfer the peak electric field (Epeak) into a deeper position in the body of the epitaxial layer, and enhance the ability of the device to shield the high electric field at the Schottky contact interface (ES), so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002% of that of the PBL-free MPS. Meanwhile, the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL (2D-PBL MPS), and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL. All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.

摘要

现代社会对半导体芯片具有旺盛的需求, 而4H型碳化硅(4H-SiC)功率器件是下一代半导体芯片 中极具潜力的候选者, 可应用于各种电力电子系统。为了提高4H-SiC 功率器件的性能, 本文提出了一 种具有三维(3D) p 型埋层(PBL)的超高压(UHV) 4H-SiC 混合p 型/本征/n 型(PiN)肖特基(MPS)(3D-PBL MPS)二极管, 并进行了数值模拟仿真研究。3D-PBL MPS 的静态正向导通特性与没有PBL的传统4HSiC MPS二极管(PBL-free MPS)的相近。然而, 当3D-PBL MPS 处于反向阻断状态时, 3D PBL 可以将 峰值电场(Epeak)转移到外延层体内更深的位置, 增强器件屏蔽肖特基接触界面处高电场(ES)的能力。因 此, 3D-PBL MPS在10 kV下的反向漏电流密度仅为PBL-free MPS的0.002%。新型3D-PBL MPS也克 服了具有二维PBL的4H-SiC MPS二极管(2D-PBL MPS)的缺点。当器件从反向阻断状态转换到正向导 通状态后, 3D-PBL MPS的正向导通特性不会退化, 这是由于3D PBL具有特殊的耗尽层变化机制。所 有器件仿真结果表明, 新型UHV 3D-PBL MPS具有出色的器件性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIE Yi. Synthesis and bandgap tuning of novel germanium and silicon based semiconductor two-dimensional atomic crystals [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2004059. DOI: https://doi.org/10.3866/PKU.WHXB202004059. (in Chinese)

    Article  Google Scholar 

  2. ZHAO Jin-jin, KONG Guo-li, CHEN Shu-lin, LI Qian, HUANG Bo-yuan, LIU Zheng-hao, SAN Xing-yuan, WANG Yu-jia, WANG Chen, ZHEN Yun-ce, WEN Hai-dan, GAO Peng, LI Jiang-yu. Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells [J]. Science Bulletin, 2017, 62(17): 1173–1176. DOI: https://doi.org/10.1016/j.scib.2017.08.022.

    Article  Google Scholar 

  3. HE Qi-yuan, ZHANG Hua. Towards the scalable vdw heterostructure array [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2003075. DOI: https://doi.org/10.3866/PKU.WHXB202003075.(in Chinese)

    Article  Google Scholar 

  4. ZHAO Jin-jin, SU Xiao, ZHOU Mi, ZHANG Ying, HU Yan-jun, GUO Hua-jun, JIAO Yi-nan, ZHANG Yu-xia, SHI Yan, HAO Wei-zhong, WU Jing-wei, WANG Yi, GAO Cun-fa, CAO Guo-zhong. Trivalent Ni oxidation controlled through regulating lithium content to minimize perovskite interfacial recombination [J]. Rare Metals, 2021, 41: 96–105. DOI: https://doi.org/10.1007/s12598-021-01800-6.

    Article  Google Scholar 

  5. MA Li, SHAO Yun-fei. A brief review of innovative strategies towards structure design of practical electronic display device [J]. Journal of Central South University, 2020, 27(6): 1624–1644. DOI: https://doi.org/10.1007/s11771-020-4395-x.

    Article  Google Scholar 

  6. ZHAO Jin-jin, WEI Li-yu, JIA Chun-mei, TANG Hao, SU Xiao, OU Yun, LIU Zheng-hao, WANG Chen, ZHAO Xing-yu, JIN Hong-yun, WANG Peng, YU Gang, ZHANG Guang-lei, LIU Jin-xi. Metallic tin substitution of organic lead perovskite film for efficient solar cells [J]. Journal of Materials Chemistry A, 2018, 6(41): 20224–20232. DOI: https://doi.org/10.1039/C8TA05282D.

    Article  Google Scholar 

  7. JIA Chun-mei, ZHAO Xing-yu, LAI Yu-hong, ZHAO Jin-jin, WANG Pei-chun, LIOU De-shiang, WANG Peng, LIU Zheng-hao, ZHANG Wen-hua, CHEN Wei, CHU Ying-hao, LI Jiang-yu. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate [J]. Nano Energy, 2019, 60: 476–484. DOI: https://doi.org/10.1016/j.nanoen.2019.03.053.

    Article  Google Scholar 

  8. HASHMAT A, ADNAN J, AFTAB K. Reflection of thermo-elastic wave in semiconductor nanostructures nonlocal porous medium [J]. Journal of Central South University, 2020, 27(11): 3188–3201. DOI: https://doi.org/10.1007/s11771-020-4472-1.

    Article  Google Scholar 

  9. HU Feng, XIE Zhi-peng, ZHANG Jian, HU Zun-lan, AN Di. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics [J]. Rare Metals, 2020, 39: 463–478. DOI: https://doi.org/10.1007/s12598-020-01376-7.

    Article  Google Scholar 

  10. YAMAGUCHI K, KATSURA K, YAMADA T, SATO Y. Criteria for using antiparallel SiC SBDs with SiC MOSFETs for SiC-based inverters [J]. IEEE Transactions on Power Electronics, 2019, 35(1): 619–629. DOI: https://doi.org/10.1109/TPEL.2019.2911988.

    Article  Google Scholar 

  11. YLDRM D, AKIT M H, YOLAAN C, PUL T, ERMI C, AGHDAM B H, ADRC I, ERMI M. Full-scale physical simulator of all SiC traction motor drive with onboard supercapacitor ESS for light-rail public transportation [J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6290–6301. DOI: https://doi.org/10.1109/TIE.2019.2934086.

    Article  Google Scholar 

  12. NIWA H, SUDA J, KIMOTO T. Ultrahigh-voltage SiC MPS diodes with hybrid unipolar/bipolar operation [J]. IEEE Transactions on Electron Devices, 2016, 64(3): 874–881. DOI: https://doi.org/10.1109/TED.2016.2636573.

    Article  Google Scholar 

  13. LI Liu, WU Jiu-peng, REN Na, GUO Qing, SHENG Kuang. 1200-V 4H-SiC merged pin Schottky diodes with high avalanche capability [J]. IEEE Transactions on Electron Devices, 2020, 67(9): 3679–3684. DOI: https://doi.org/10.1109/TED.2020.3007136.

    Article  Google Scholar 

  14. LI Xin, XIAO Fei, LUO Yi-fei. Parameter extraction method for a physics-based lumped-charge SiC MPS diode model [J]. IET Power Electronics, 2020, 13(14): 2992–3000. DOI: https://doi.org/10.1049/iet-pel.2020.0350.

    Article  Google Scholar 

  15. PALANISAMY S, AHMMED M K, KOWALSKY J, LUTZ J, BASLER T. Investigation of the avalanche ruggedness of SiC MPS diodes under repetitive unclamped-inductive-switching stress [J]. Microelectronics Reliability, 2019, 100: 113435. DOI: https://doi.org/10.1016/j.microrel.2019.113435.

    Article  Google Scholar 

  16. HUANG Ya-ren, BUETTNER J, LECHNER B, WACHUTKA G. The impact of non-ideal ohmic contacts on the performance of high-voltage SiC MPS diodes [J]. Materials Science Forum, 2019, 963: 553–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.963.553.

    Article  Google Scholar 

  17. LI Xin, XIAO Fei, LUO Yi-fei. Analysis and modeling of SiC MPS diode and its parasitic oscillation [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 8(1): 152–162. DOI: https://doi.org/10.1109/JESTPE.2019.2952875.

    Article  MathSciNet  Google Scholar 

  18. BENEDETTO L D, LICCIARDO G D, ERLBACHER T, BAUE A J, BELLONE S. Analytical model and design of 4H-SiC planar and trenched JBS diodes [J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2474–2481. DOI: https://doi.org/10.1109/TED.2016.2549599.

    Article  Google Scholar 

  19. CROFTON J, SRIRAM S. Reverse leakage current calculations for SiC Schottky contacts [J]. IEEE Transactions on Electron Devices, 1996, 43(12): 2305–2307. DOI: https://doi.org/10.1109/16.544427.

    Article  Google Scholar 

  20. STAHLBUSH R E, MAHADIK N A, ZHANG Q J, AA Burk, HULL B A, YOUNG J. Basal plane dislocations created in 4H-SiC epitaxy by implantation and activation anneal [C]//Materials Science Forum. Trans Tech Publications Ltd, 2015, 821: 387–390. DOI: https://doi.org/10.4028/www.scientific.net/MSF.821-823.387.

    Google Scholar 

  21. GELCZUK L, KAMYCZEK P, PLACZEK P E, SZATA M D. Correlation between barrier inhomogeneities of 4H-SiC 1 A/600 V Schottky rectifiers and deep-level defects revealed by DLTS and Laplace DLTS [J]. Solid-state electronics, 2014, 99: 1–6. DOI: https://doi.org/10.1016/j.sse.2014.04.043.

    Article  Google Scholar 

  22. LEE Kung-yen, LIU Yuan-heng, WANG Sheng-chung, CHAN L S. Influence of the design of square p+ islands on the characteristics of 4H-SiC JBS [J]. IEEE Transactions on Electron Devices, 2017, 64(3): 1394–1398. DOI: https://doi.org/10.1109/TED.2017.2653844.

    Article  Google Scholar 

  23. WANG Xi, PU Hong-bin, HU Ji-chao. SiC trenched schottky diode with step-shaped junction barrier for superior static performance and large design window [J]. Materials Science Forum, 2020, 1014: 62–67. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1014.62.

    Article  Google Scholar 

  24. RUSCH O, MOULT J, ERLBACHER T. Influence of trench design on the electrical properties of 650V 4H-SiC JBS diodes [J]. Materials Science Forum, 2019, 963: 549–552. DOI: https://doi.org/10.4028/www.scientific.net/MSF.963.549.

    Article  Google Scholar 

  25. HUANG Ya-ren, BUETTNER J, LECHNER B, WACHUTKA G. The impact of non-ideal ohmic contacts on the performance of high-voltage SIC MPS diodes [J]. Materials Science Forum, 2019, 963: 553–557. DOI: https://doi.org/10.4028/www.scientific.net/MSF.963.553.

    Article  Google Scholar 

  26. KONISHi K, KAMESHIRO N, YOKOYAMA N. Effect of trench structure on reverse characteristics of 4H-SiC junction barrier Schottky diodes [J]. Japanese Journal of Applied Physics, 2017, 56(12): 121301. DOI: https://doi.org/10.7567/JJAP.56.121301.

    Article  Google Scholar 

  27. LIM J K, PEFTITSIS D, SADIK D P, BAKOWSKI M, NEE H P. Evaluation of buried grid JBS diodes [J]. Materials Science Forum, 2014, 778: 804–807. DOI: https://doi.org/10.4028/www.scientific.net/MSF.778-780.804.

    Article  Google Scholar 

  28. ELAHIPANAH H, THIERRY-JEBALI N, RESHANOV S A, KAPLAN W, ZHANG A, LIM J K, BAKOWSKI M. Design optimization of a high temperature 1.2 kV 4H-SiC buried grid JBS rectifier [J]. Materials Science Forum, 2017, 897: 455–458. DOI: https://doi.org/10.4028/www.scientific.net/MSF.897.455.

    Article  Google Scholar 

  29. HOSSAIN Z, IMAM M, FULTON J. Double-resurf 700V n-channel LDMOS with best-in-class on-resistance [C]//Power Semiconductor Devices and ICs, 2002. Proceedings of the 14th International Symposium on. 2002. DOI: https://doi.org/10.1109/ISPSD.2002.1016190.

  30. OTA C, NISHIO J, TAKAO K. Doping concentration optimization for ultra-low-loss 4H-SiC floating junction Schottky barrier diode (super-SBD) [J]. Materials Science Forum, 2009, 615: 655–658. DOI: https://doi.org/10.4028/www.scientific.net/MSF.615-617.655.

    Article  Google Scholar 

  31. SUN Yong-qiang, FENG Gan, KANG Jun-yong, QIAN Wei-ning. Growth of 150 mm 4H-SiC epitaxial layer by a hotwall reactor [J]. Materials Science Forum, 2018, 924: 76–79. DOI: https://doi.org/10.4028/www.scientific.net/msf.924.76.

    Article  Google Scholar 

  32. REN Na, WANG Jue, SHENG Kuang. Design and experimental study of 4H-SiC trenched junction barrier Schottky diodes [J]. IEEE Transactions on Electron Devices, 2014, 61(7): 2459–2465. DOI: https://doi.org/10.1109/TED.2014.2320979.

    Article  Google Scholar 

  33. ALEXANDER B, PETER L, REZA G. SiC charge-balanced devices offering breakthrough performance surpassing the 1-D Ron versus BV limit [J]. Materials Science Forum, 2019, 963: 655–659. DOI: https://doi.org/10.4028/www.scientific.net/MSF.963.655.

    Article  Google Scholar 

  34. YUAN Hao, WANG Cheng-sen, TANG Xiao-yan, SONG Qing-wen. Experimental study of high performance 4H-SiC floating junction JBS diodes [J]. IEEE Access, 2020, 8: 93039–93047. DOI: https://doi.org/10.1109/ACCESS.2020.2994625.

    Article  Google Scholar 

  35. WANG Heng-yu, WANG Ce, WANG Bao-zhu, REN Na, SHENG Kuang. 4H-SiC super-junction JFET: Design and experimental demonstration [J]. IEEE Electron Device Lette, 2020, 41: 445–448. DOI: https://doi.org/10.1109/LED.2020.2969683.

    Article  Google Scholar 

  36. ZHONG Xue-qian, SHENG Kuang. Experimental demonstration and analysis of a 1.35-kV 0.92-mΩ · cm2 SiC superjunction Schottky diode [J]. IEEE Trans Electron Devices, 2018, 65: 1458–1465. DOI: https://doi.org/10.1109/TED.2018.2809475.

    Article  Google Scholar 

  37. SANG Ling, XIA Jing-hua, JIN Rui, WANG Yao-hua, ZHA Yi-ying. Ion implantation of aluminum in 4H-SiC epilayers from 90 keV to above 1 MeV [J]. Solid State Electron, 2020, 172. DOI: https://doi.org/10.1016/j.sse.2020.107899.

  38. TANG Guan-nan, TANG Xiao-yan, SONG Qin-wen, YANG Shuai, ZHANG Yu-ming. Frequency-improved 4H-SiC IGBT with multizone collector design [J]. IEEE Transactions on Electron Devices, 2019, 67(1): 198–203. DOI: https://doi.org/10.1109/TED.2019.2951021.

    Article  Google Scholar 

Download references

Funding

Project(F2020210016) supported by the Natural Science Foundation of Hebei, China; Project(620004153) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Yang  (杨帅).

Additional information

Contributors

The overarching research goals were developed by YANG Shuai and ZHANG Guang-lei. LUO Wen-yu, ZHANG Xiao-dong and CAO An provided the device model, and analyzed the calculated results. The calculation was carried out by PENG Bo. The initial draft of the manuscript was written by YANG Shuai, LUO Wen-yu and ZHAO Jin-jin. YANG Shuai and ZHAO Jin-jin replied to reviewers’ comments and revised the final version.

Conflict of interest

YANG Shuai, ZHANG Xiao-dong, CAO An, LUO Wen-yu, ZHANG Guang-lei, PENG Bo and ZHAO Jin-jin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, Xd., Cao, A. et al. An ultrahigh-voltage 4H-SiC merged PiN Schottky diode with three-dimensional p-type buried layers. J. Cent. South Univ. 28, 3694–3704 (2021). https://doi.org/10.1007/s11771-021-4887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4887-3

Key words

关键词

Navigation