Skip to main content
Log in

Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti-6Al-4V components

沉积速 率对电弧增材制造 Ti-6Al-4V 零件的组织和力学性能影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Wire arc additive manufacturing (WAAM) is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock, and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material. In the present work, a cold metal transfer (CMT) based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated. The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions. When the deposition rate increased from 1.63 to 2.23 kg/h, the ultimate tensile strength (UTS) decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.

摘要

电弧增材制造(WAAM)是一种新型的制造技术,这项技术可以通过电弧作为热源并以金属丝材作为原料逐层制造高强度金属部件,在大批量生产和生产大尺寸结构零件方面具有巨大的潜力。这项技术还具有高生产效率和高材料利用率的优点。在本工作中,进行了基于冷金属过渡(CMT)的 Ti-6Al-4V 材料的增材制造,研究了沉积速率对电弧增材制造Ti-6Al-4V 零件的显微组织和力学性能的影响。电弧增材制造零件的微观结构在所有沉积条件下均表现出相似的微观结构形态。当沉积速率从 1.6 增加至 2.23 kg/h 时,极限抗拉强度(UTS)从 984.6 MPa 降低至 899.2 MPa,显微硬度显示出分散但明显的下降趋势。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater, 2015, 87: 309–320. DOI: https://doi.org/10.1016/j.actamat.2014.12.054.

    Article  Google Scholar 

  2. DONACHIE M J. Titanium: A technical guide [M]. ASM International, 2000.

  3. PETERS M, HEMPTENMACHER J, KUMPFERT J, LEYENS C. Structure and properties of titanium and titanium alloys [M]// Titanium and Titanium alloys: Fundomentals and Applications. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co., 2005: 1–36. DOI: https://doi.org/10.1002/3527602119.ch1.

    Google Scholar 

  4. LI Guo-jin, ZHANG Pei-lei, WU Xi, NIE Yun-peng, YU Zhi-shui, YAN Hua, LU Qing-hua. Gap bridging of 6061 aluminum alloy joints welded by variable-polarity cold metal transfer [J]. Journal of Materials Processing Technology, 2018, 255: 927–935. DOI: https://doi.org/10.1016/j.jmatprotec.2018.01.004.

    Article  Google Scholar 

  5. NIE Y, ZHANG P, WU X, LI G, YAN H, YU Z. Rapid prototyping of 4043 Al-alloy parts by cold metal transfer [J]. Science and Technology of Welding and Joining, 2018, 23: 527–535. DOI: https://doi.org/10.1080/13621718.2018.1438236.

    Article  Google Scholar 

  6. GU D D, MEINERS W, WISSENBACH K, POPRAWE R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. International Materials Reviews, 2012, 57: 133–164. DOI: https://doi.org/10.1179/1743280411Y.0000000014.

    Article  Google Scholar 

  7. HERZOG D, SEYDA V, WYCISK E, EMMELMANN C. Additive manufacturing of metals [J]. Acta Mater, 2016, 117: 371–392. DOI: https://doi.org/10.1016/j.actamat.2016.07.019.

    Article  Google Scholar 

  8. MURR L E, MARTINEZ E, AMATO K N, GAYTAN S M, HERNANDEZ J, RAMIREZ D A, SHINDO P W, MEDINA F, WICKER R B. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science [J]. Journal of Materials Research and Technology, 2012, 1: 42–54. DOI: https://doi.org/10.1016/S2238-7854(12)70009-1.

    Article  Google Scholar 

  9. ZHANG Qi, ZHANG Pei-lei, YU Zhi-shui, YAN Hua, SHI Hai-chuan, WU Di, LI Shao-wei, TIAN Ying-tao. Microstructure and properties of an Al 6061/Galvanized plate fabricated by CMT welding [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35: 937–945. DOI: https://doi.org/10.1007/s11595-020-2340-3.

    Article  Google Scholar 

  10. JIANG Q, ZHANG P L, YU Z S, SHI H C, LI S W, WU D, YAN H, YE X, CHEN J S. Microstructure and mechanical properties of thick-walled Inconel 625 alloy manufactured by WAAM with different torch paths [J]. Advanced Engineering Materials, 2021, 26(1): 2000728. DOI: https://doi.org/10.1002/adem.202000728.

    Article  Google Scholar 

  11. LIU Zhi-qiang, ZHANG Pei-lei, LI Shao-wei, WU Di, YU Zhi-shui. Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27: 783–791. DOI: https://doi.org/10.1007/s12613-019-1930-6.

    Article  Google Scholar 

  12. WILLIAMS S W, MARTINA F, ADDISON A C, DING J, PARDAL G, COLEGROVE P. Wire+arc additive manufacturing [J]. Materials Science and Technology, 2016, 32: 641–647. DOI: https://doi.org/10.1179/1743284715Y.0000000073.

    Article  Google Scholar 

  13. RODRIGUES T A, DUARTE V, MIRANDA R M, SANTOS T G, OLIVEIRA J P. Current status and perspectives on wire and arc additive manufacturing (WAAM) [J]. Materials, 2019, 12: 1121. DOI: https://doi.org/10.1179/1743284715Y.0000000073.

    Article  Google Scholar 

  14. CUNNINGHAM C R, FLYNN J M, SHOKRANI A, DHOKIA V, NEWMAN S T. Invited review article: Strategies and processes for high quality wire arc additive manufacturing [J]. Additive Manufacturing, 2018, 22: 672–686. DOI: https://doi.org/10.1016/j.addma.2018.06.020.

    Article  Google Scholar 

  15. WU Bin-tao, PAN Zeng-xi, DING Dong-hong, CUIURI D, LI Hui-jun, XU Jing, NORRISH J. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement [J]. Journal of Materials Processing Technology, 2018, 35: 127–139. DOI: https://doi.org/10.1016/J.JMAPRO.2018.08.001.

    Google Scholar 

  16. LI Rui-di, WANG Min-bo, LI Zhi-ming, CAO Peng, YUAN Tie-chui, ZHU Hong-bin. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Materialia, 2020, 193: 83–98. DOI: https://doi.org/10.1016/j.actamat.2020.03.060.

    Article  Google Scholar 

  17. ALMEIDA P, WILLIAMS S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT) [C]// Proccedings of the 21st Annual International Solid Freeform Fabrication Symposium. Austin, Texas, 2010: 25–36.

  18. KIM B, RITZDORF T. Electrical waveform mediated through-mask deposition of solder bumps for wafer level packaging [J]. Journal of The Electrochemical Society, 2004, 151: C342. DOI: https://doi.org/10.1149/1.1690784.

    Article  Google Scholar 

  19. WANG F, WILLIAMS S, COLEGROVE P, ANTONYSAMY A A. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J] Metallurgical and Materials Transactions A, 2013, 44: 968–977. DOI: https://doi.org/10.1007/s11661-012-1444-6.

    Article  Google Scholar 

  20. ZHOU J, TSAI H L., Developments in pulsed and continuous wave laser welding technologies [M]// Handbook of Laser Welding Technologies. Amsterdam: Elsevier, 2013: 103–148. DOI: https://doi.org/10.1533/9780857098771.1.103.

    Chapter  Google Scholar 

  21. MARTINA F, MEHNEN J, WILLIAMS S W, COLEGROVE P, WANG F. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V [J]. Journal of Materials Processing Technology, 2012, 212: 1377–1386. DOI: https://doi.org/10.1016/JJMATPROTEC.2012.02.002.

    Article  Google Scholar 

  22. BAUFELD B, van der BIEST O, GAULT R. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition [J]. International Journal of Materials Research, 2009, 100(11): 1536–1542. DOI: https://doi.org/10.3139/146.110217.

    Article  Google Scholar 

  23. CHENG Jiang-bo, FENG Yuan, YAN Chen, HU Xian-long, LI Rui-feng, LIANG Xiu-bing. Development and characterization of Al-Based amorphous coating [J]. JOM, 2020, 72: 745–753. DOI: https://doi.org/10.1007/s11837-019-03966-y.

    Article  Google Scholar 

  24. HO A, ZHAO H, FELLOWES J W, MARTINA F, DAVIS A E, PRANGNELL P B. On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing [J]. Acta Materialia, 2019, 166: 306–323. DOI: https://doi.org/10.1016/j.actamat.2018.12.038.

    Article  Google Scholar 

  25. FRAZIER W E. Metal additive manufacturing: A review [J]. Journal of Materials Engineering and Performance, 2014, 23: 1917–1928. DOI: https://doi.org/10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  26. MARTINA F, ROY M J, SZOST B A, TERZI S, COLEGROVE P A, WILLIAMS S W, WITHERS P J, MEYER J, HOFMANN M. Residual stress of as-deposited and rolled wire+arc additive manufacturing Ti-6Al-4V components [J]. Materials Science and Technology, 2016, 32: 1439–1448. DOI: https://doi.org/10.1080/02670836.2016.1142704.

    Article  Google Scholar 

  27. MCANDREW A R, ALVAREZ ROSALES M, COLEGROVE P A, HÖNNIGE J R, HO A, FAYOLLE R, EYITAYO K, STAN I, SUKRONGPANG P. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement [J]. Additive Manufacturing, 2018, 21: 340–349. DOI: https://doi.org/10.1016/J.ADDMA.2018.03.006.

    Article  Google Scholar 

  28. DONOGHUE J, ANTONYSAMY A A, MARTINA F, COLEGROVE P A, WILLIAMS S W, PRANGNELL P B. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V [J]. Materials Characterization, 2016, 114: 103–114. DOI: https://doi.org/10.1016/j.matchar.2016.02.001.

    Article  Google Scholar 

  29. HÖNNIGE J R, COLEGROVE P A, AHMAD B, FITZPATRICK M E, GANGULY S, LEE T L, WILLIAMS S W. Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling [J]. Materials & Design, 2018, 150: 193–205. DOI: https://doi.org/10.1016/J.MATDES.2018.03.065.

    Article  Google Scholar 

  30. WU Bin-tao, PAN Zeng-xi, DING Dong-hong, CUIURI D, LI Hui-jun, FEI Zhen-yu. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy [J]. Journal of Materials Processing Technology, 2018, 258: 97–105. DOI: https://doi.org/10.1016/j.jmatprotec.2018.03.024.

    Article  Google Scholar 

  31. BAUFELD B, BRANDL E, van der BIEST O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition [J]. Journal of Materials Processing Technology, 2011, 211: 1146–1158. DOI: https://doi.org/10.1016/j.jmatprotec.2011.01.018.

    Article  Google Scholar 

  32. BAUFELD B. Effect of deposition parameters on mechanical properties of shaped metal deposition parts [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226: 126–136. DOI: https://doi.org/10.1177/0954405411403669.

    Article  Google Scholar 

  33. BERMINGHAM M J, NICASTRO L, KENT D, CHEN Y, DARGUSCH M S. Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments [J]. Journal of Alloys and Compounds, 2018, 753: 247–255. DOI: https://doi.org/10.1016/J.JALLCOM.2018.04.158.

    Article  Google Scholar 

  34. QIAN Gui-an, JIAN Zhi-mo, QIAN Yu-jia, PAN Xiang-nan, MA Xian-feng, HONG You-shi. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build orientation and mean stress [J]. Int J Fatigue, 2020, 138: 105696. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105696.

    Article  Google Scholar 

  35. QIAN Gui-an, LI Yan-feng, PAOLINO D S, TRIDELLO A, BERTO F, HONG You-shi. Very-high-cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: Effect of build orientation [J]. International Journal of Fatigue, 2020, 136: 105628. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105628.

    Article  Google Scholar 

  36. WU Bin-tao, PAN Zeng-xi, DING Dong-hong, CUIURI D, LI Hui-jun. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing [J]. Additive Manufacturing, 2018, 23: 151–160. DOI: https://doi.org/10.1016/j.addma.2018.08.004.

    Article  Google Scholar 

  37. TIAN Yin-bao, SHEN Jun-qi, HU Sheng-sun, GOU Jian, CUI Yan. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. Journal of Materials Science & Technology, 2021, 74: 35–45. DOI: https://doi.org/10.1016/j.jmst.2020.09.014.

    Article  Google Scholar 

  38. GOU Jian, SHEN Jun-qi, HU Sheng-sun, TIAN Yin-bao, LIANG Ying. Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing [J]. Journal of Manufacturing Processes, 2019, 42: 41–50. DOI: https://doi.org/10.1016/j.jmapro.2019.04.012.

    Article  Google Scholar 

  39. BAI Xing-wang, COLEGROVE P, DING Jia-luo, ZHOU Xiang-man, DIAO Cheng-lei, BRIDGEMAN P, ROMAN HÖNNIGE J, ZHANG Hai-ou, WILLIAMS S. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing [J]. International Journal of Heat and Mass Transfer, 2018, 124: 504–516. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085.

    Article  Google Scholar 

  40. AHMED T, RACK H J. Phase transformations during cooling in α+β titanium alloys [J]. Materials Science and Engineering A, 1998, 243: 206–211. DOI: https://doi.org/10.1016/S0921-5093(97)00802-2.

    Article  Google Scholar 

  41. ROSENTHAL D. The theory of moving sources of heat and its application to metal treatments [J]. Transactions ASME, 1946, 43: 849–866.

    Google Scholar 

  42. DING Dong-hong, PAN Zeng-xi, CUIURI D, LI Hui-jun. Wire-feed additive manufacturing of metal components: technologies, developments and future interests [J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 465–481. DOI: https://doi.org/10.1007/s00170-015-7077-3.

    Article  Google Scholar 

  43. ZHAO H, HO A, DAVIS A, ANTONYSAMY A, PRANGNELL P. Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V [J]. Materials Characterization, 2019, 147: 131–145. DOI: https://doi.org/10.1016/J.MATCHAR.2018.10.027.

    Article  Google Scholar 

  44. KOBRYN P, SEMIATIN S. Microstructure and texture evolution during solidification processing of Ti-6Al-4V [J]. Journal of Materials Processing Technology, 2003, 135: 330–339. DOI: https://doi.org/10.1016/S0924-136(02)00865-8.

    Article  Google Scholar 

  45. SING S L, AN J, YEONG W Y, WIRIA F E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. Journal of Orthopaedic Research, 2016, 34: 369–385. DOI: https://doi.org/10.1002/jor.23075.

    Article  Google Scholar 

  46. WARMUTH F, OSMANLIC F, ADLER L, LODES M A, KÖRNER C. Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting [J]. Smart Materials and Structures, 2017, 26(2): 025013. DOI: https://doi.org/10.1088/1361-65X/26/2/025013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Pei-lei designed the project. JIA Zhi-yuan, TIAN Ying-tao and YAN Hua carried out data processing, performed data analysis. YU Zhi-shui, WU Di and SHI Hai-chuan offered some valuable suggestions for the contents of the manuscript. WANG Fu-xin, LEI Wei-sheng and MA Song-yun offered the specimen, performed data analysis. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Pei-lei Zhang  (张培磊).

Additional information

Conflict of interest

ZHANG Pei-lei, JIA Zhi-yuan, YAN Hua, YU Zhi-shui, WU Di, SHI Hai-chuan, WANG Fu-xin, TIAN Ying-tao, MA Song-yun and LEI Wei-sheng declare that they have no conflict of interest.

Foundation item: Projects(52075317, 51905333) supported by the National Natural Science Foundation of China; Project(IEC\NSFC\181278) supported by the Royal Society through International Exchanges 2018 Cost Share (China) Scheme; Project(19YF1418100) supported by Shanghai Sailing Program, China; Projects(19511106400, 19511106402) supported by Shanghai Science and Technology Committee Innovation, China; Project(19030501300) supported by Shanghai Local Colleges and Universities Capacity Building Special Plan, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Pl., Jia, Zy., Yan, H. et al. Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti-6Al-4V components. J. Cent. South Univ. 28, 1100–1110 (2021). https://doi.org/10.1007/s11771-021-4683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4683-0

Key words

关键词

Navigation