Skip to main content
Log in

Development and Characterization of Al-Based Amorphous Coating

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of this article is to investigate the relationship among the material design, in situ synthesis, microstructure and mechanical properties of arc-sprayed Al-Ni-Ti amorphous coatings. The precursor reactants were designed by aluminium strip and low-purity industrial alloy powders. The results show that the Al-Ni-Ti coating displays a lamellar structure with porosity up to 1%. The volume fraction of the amorphous, crystallization temperature and hardness of the coatings are 85.9%, 365°C and 4.87 GPa, respectively. The microstructure analysis reveals that the grey region in the coating has a glassy structure and the white region has a crystalline structure of α-Al phase. In 0.6 M NaCl solution, compared with the crystalline structure of the arc-sprayed Al coating and 6061-Al alloy, the Al-Ni-Ti amorphous coating demonstrates an extraordinarily higher pitting potential (− 0.12 V) and lower corrosion current density (4.54 × 10−8 A/cm2). These investigations show that the present Al-Ni-Ti amorphous coating furnishes valuable guidance for expanding engineering applications with an inexpensive, high glass formation ability and prominent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Inoue, Prog. Mater Sci. 43, 365 (1998).

    Article  Google Scholar 

  2. R. Jindal, V.S. Raja, M.A. Gibson, M.J. Styles, T.J. Bastow, and C.R. Hutchinson, Corr. Sci. 84, 54 (2014).

    Article  Google Scholar 

  3. J. Jiang, D. Hofmann, D.J. Jarvis, and H.J. Fecht, Adv. Eng. Mater. 17, 761 (2015).

    Article  Google Scholar 

  4. F.F. Han, A. Inoue, Y. Han, F.L. Kong, S.L. Zhu, E. Shalaan, F. Al-Marzouki, and A.L. Greer, Sci. Rep. 7, 46113 (2017).

    Article  Google Scholar 

  5. Z.P. Chen, J.E. Gao, Y. Wu, H. Wang, X.J. Liu, and Z.P. Lu, Sci. Rep. 3, 3353 (2013).

    Article  Google Scholar 

  6. S. Kim, G. Lee, G. Park, H. Kim, A. Lee, S. Scudino, K.G. Prashanth, D. Kim, J. Eckert, and M. Lee, Sci. Rep. 8, 1090 (2018).

    Article  Google Scholar 

  7. N.C. Wu, L. Zuo, J.Q. Wang, and E. Ma, Acta Mater. 108, 143 (2016).

    Article  Google Scholar 

  8. S.S. Joshi, S. Katakam, H.S. Arora, S. Mukherjee, and N.B. Dahotre, Crit. Rev. Solid State Mater. Sci. 41, 1 (2015).

    Article  Google Scholar 

  9. C. Tan, H. Zhu, T. Kuang, J. Shi, H. Liu, and Z. Liu, J. Alloys Compd. 690, 108 (2017).

    Article  Google Scholar 

  10. D. Zhang and D. Kong, J. Alloys Compd. 735, 1 (2018).

    Article  Google Scholar 

  11. F.P. Moreno, M.A. Jakab, N. Tailleart, M. Goldman, and J.R. Scully, Mater. Today 11, 14 (2008).

    Article  Google Scholar 

  12. D. Lahiri, P.K. Gill, S. Scudino, C. Zhang, V. Singh, J. Karthikeyan, N. Munroe, S. Seal, and A. Agarwal, Surf. Coat. Technol. 232, 33 (2013).

    Article  Google Scholar 

  13. J. Henao, A. Concustell, I.G. Cano, S. Dosta, N. Cinca, J.M. Guilemany, and T. Suhonen, Mater. Des. 94, 253 (2016).

    Article  Google Scholar 

  14. M. Gao, W. Lu, B. Yang, S. Zhang, and J. Wang, J. Alloys Compd. 735, 1363 (2018).

    Article  Google Scholar 

  15. J. Cheng, B. Wang, Q. Liu, and X. Liang, J. Alloys Compd. 716, 88 (2017).

    Article  Google Scholar 

  16. A.P. Newbery, P.S. Grant, and R.A. Neiser, Surf. Coat. Technol. 195, 91 (2005).

    Article  Google Scholar 

  17. J.R. Davis, Handbook of Thermal Spray Technology (Materials Park, OH: ASM International, 2005).

    Google Scholar 

  18. Q. Liu, J. Cheng, B. Wang, and X. Liang, J. Therm. Spray Technol. 27, 949 (2018).

    Article  Google Scholar 

  19. H.W. Yang, J. Wen, M.X. Quan, and J.Q. Wang, J. Non-Cryst. Solids 355, 235 (2009).

    Article  Google Scholar 

  20. Y. Shen and J.H. Perepezko, J. Alloys Compd. 707, 3 (2017).

    Article  Google Scholar 

  21. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

  22. T.B. Massalski, Binary alloy phase diagrams (Metals Park, OH: American Society for Metals, 1986).

    Google Scholar 

  23. A. Singh, S. Mittal, D. Mudgal, and P. Gupta, Design, development and application of nanocoatings.Nanomaterials and Their Applications Advanced Structured Materials, Vol. 84, ed. Z. Khan (Singapore: Springer, 2018),

    Google Scholar 

  24. S.D. Zhang, Z.W. Liu, Z.M. Wang, and J.Q. Wang, Corr. Sci. 83, 111 (2014).

    Article  Google Scholar 

  25. D.D. Xu, B.L. Zhou, Q.Q. Wang, J. Zhou, W.M. Yang, C.C. Yuan, L. Xue, X.D. Fan, L.Q. Ma, and B.L. Shen, Corr. Sci. 138, 20 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Key R&D Program of China (Grant No. 2018YFC1902404), National Natural Science Foundation of China (Grant Nos. 51575159, 51975183) and the Key Research and Development Plan of Jiangsu Province, China (Grant No. BE2017065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangbo Cheng or Ruifeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Feng, Y., Yan, C. et al. Development and Characterization of Al-Based Amorphous Coating. JOM 72, 745–753 (2020). https://doi.org/10.1007/s11837-019-03966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03966-y

Navigation