Skip to main content
Log in

Pressure performance improvement by dual-mode control in digital pump/motor

基于双模式控制的数字泵/马达压力特性优化研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Due to the advantages of low cost, fast response and pollution resistance, digital hydraulic pump/motor can replace conventional variable hydraulic pump/motor in many application fields. However, digital hydraulic components produce large hydraulic impact at variable moments, which will shorten the service life of mechanical components. Through the simulation analysis of the variable process of digital pump/motor, it is found that the discontinuous flow caused by displacement step changes is the fundamental cause of hydraulic impact. The data analysis results of experimental tests are in good agreement with the simulation analysis results. In view of hydraulic secondary components, a variable control method based on dual-mode operating characteristics is proposed. The TOPSIS algorithm is used to give comprehensive evaluation of the displacement control results after this method. The results show that the control quality of digital pump/motor after adopting the control method has been effectively improved, with an average improvement of about 40%.

摘要

数字式液压泵/马达具有成本低、响应快、耐污染等优点, 在很多应用领域可以代替常规的变量 泵/马达。然而, 数字液压元件在变量瞬间产生较大的液压冲击, 会缩短机械元件的使用寿命。通过对 数字泵/马达的变量过程进行仿真分析后发现, 排量阶梯变化导致的流量不连续是产生液压冲击的根 本原因, 且实验测试的数据分析结果与仿真分析结论吻合度较高。结合液压二次元件的特点, 提出了 基于双模式工作特性的变量控制方法, 利用TOPSIS 算法对采用该方法后的排量控制结果进行综合评 价, 结果表明, 采用该组合方法后的数字泵/马达的控制品质得到了有效的提高, 平均提高约40%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Huan-kun, PAUL L. Modelling and energy efficiency analysis of a hybrid pump-controlled asymmetric (single-rod) cylinder drive system [J]. International Journal of Hydromechatronics, 2020, 3(1): 1–25. DOI: https://doi.org/10.1504/IJHM.2020.105501.

    Article  Google Scholar 

  2. MATTI L. Digital fluid power—state of the art [C]// The 12th Scandinavian International Conference on Fluid Power. Tampere, Finland, 2011: 18–20. https://www.ixueshu.com/document/6ddee084ae0ffbf2318947a18e7f9386.html.

  3. FLOR M, SCHELLER S, HEIDENFELDER R. Digital hydraulics at Bosch Rexroth—A trend evolves to real applications [C]// The 5th Workshop on Digital Fluid Power. Tampere, Finland, 2012: 5–14. https://trepo.tuni.fi/bitstream/handle/10024/116752/DFP12_proceedings.pdf?sequence=1&isAllowed=y#page=8.

  4. AHSAN S, S MEHDI R, MOHAMMAD Z. Energy-efficient position control of an actuator in a digital hydraulic system using on/off valve [C]// 2016 4th International Conference on Robotics and Mechatronics (ICROM). Tehran, Iran, 2008: 34–45. DOI: https://doi.org/10.1109/ICRoM.2016.7886852.

  5. GAN Zhen-yu, KATELYN F, R BRENT G. A novel variable transmission with digital hydraulics [C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, 2015: 5838–5843. DOI: https://doi.org/10.1109/IROS.2015.7354206.

  6. SHEN Wei, MAI Yun-fei, SU Xiao-yu, ZHAO Jin-bao, JIANG Ji-hai. A new electric hydraulic actuator adopted the variable displacement pump [J]. Asian Journal of Control, 2016, 18(1): 178–191. DOI:https://doi.org/10.1002/asjc.1200.

    Article  MathSciNet  Google Scholar 

  7. EHSAN M, RAMPEN W H S, SALTER S H. Modelling of digital-displacement pump-motors and their application as hydraulic drives for nonuniform loads [J]. Journal of Dynamic Systems Measurement and Control, 2000, 122(1): 210–215. DOI: https://doi.org/10.1115/1.482444.

    Article  Google Scholar 

  8. SONG Fei, LOU Jing-jun, PENG LI-kun. Energy-saving improvement and simulation study on digital hydraulic system [C]// 2015 International Conference on Advanced Mechatronic Systems (ICAMechS). Beijing, China: IEEE Conference Publications, 2015: 310–315. DOI: https://doi.org/10.1109/ICAMechS.2015.7287080.

  9. LIU Cheng-qiang, LIU Yin-shui, LIU Jia-xin. Electro-hydraulic servo plate-Inclined plunger hydraulic transformer [J]. IEEE Access, 2016, 4: 8608–8616. DOI: https://doi.org/10.1109/ACCESS.2016.2628355.

    Google Scholar 

  10. WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Strategy of digital hydraulic transmission system for loaders [J]. Journal of Jilin University (Engineering Science), 2017, 47(3): 819–826. DOI: https://doi.org/10.13229/j.cnki.jdxbgxb201703018. (in Chinese)

    Google Scholar 

  11. MIKKO H, MATTI L. Displacement control of a mobile crane using a digital hydraulic power management system [J]. Mechatronics, 2013, 23(4): 452–461. DOI: https://doi.org/10.1016/j.mechatronics.2013.03.009.

    Article  Google Scholar 

  12. GONG Jun, ZHANG Da-qing, GUO Yong. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system [J]. Applied Energy, 2019, 233–234: 724–734. DOI: https://doi.org/10.1016/j.apenergy.2018.10.066.

    Article  Google Scholar 

  13. HELMUT K, RUDOLF S, MICHAEL E, EMANUELE G. A compact hydraulic switching converter for robotic applications [C]// Fluid Power and Motion Control (FPMC 2010). Bath, UK, 2010: 55–68. https://xueshu.baidu.com/usercenter/paper/show?paperid=718ed324b469c08ee21b190f842fc7bd&site=xueshu_se.

  14. VICTOR J, WANG Peng-fei, ANDREW P, JOHNSTON D N. Behavioral prediction of hydraulic step-up switching converters [J]. International Journal of Fluid Power, 2014, 15(1): 1–9. DOI:https://doi.org/10.1080/14399776.2014.882057.

    Article  Google Scholar 

  15. RAINER H, EVGENY L, RUDOLF S. An RC filter for hydraulic switching control with a transmission line between valves and actuator [J]. International Journal of Fluid Power, 2014, 15(3): 139–151. DOI: https://doi.org/10.1080/14399776.2014.970974.

    Google Scholar 

  16. MOORHEAD J R. Saving energy with ‘digital’ pump system [J]. Machine Design, 1984, 56(4): 40–44. https://www.researchgate.net/search.Search.html?type=researcher&query=.

    Google Scholar 

  17. ZHANG Li-ping, ZHOU Lan-wu, LIU Fen. Study on energy saving method of fixed displacement pump hydraulic system [J]. Chinese Mechanical Engineering, 2011, 12(1): 36–38. DOI: https://doi.org/10.3321/j.issn:1004-132X.2001.z1.014. (in Chinese)

    Article  Google Scholar 

  18. LIU Xin-hui, WANG Tong-jian. Step variable system with multi gear pumps: China, 201110107578.3 [P]. 2011. (in Chinese)

  19. ROEMER D, BECH M, JOHANSEN P, PEDERSEN H. Optimum design of a moving coil actuator for fast-switching valves in digital hydraulic pumps and motors [J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2761–2770. DOI: https://doi.org/10.1109/TMECH.2015.2410994.

    Article  Google Scholar 

  20. HEITZIG S, THEISSEN H. Aspects of digital pumps in closed circuit [C]// The 4th Workshop on Digital Fluid Power. Linz, Austria, 2011. https://www.tandfonline.com/doi/abs/10.1080/14399776.2012.10781060.

  21. HEITZIG S, SGRO S, THEISSEN H. Energy efficiency of hydraulic systems with shared digital pumps [J]. International Journal of Fluid Power, 2012, 13(3): 49–57.

    Article  Google Scholar 

  22. MIIKKA K, MATTI L. Digital hydraulic IMV system in an excavator–first results [C]// The Sixteenth Scandinavian International Conference on Fluid Power. Tampere, Finland, 2019. https://www.researchgate.net/publication/336209686.

  23. LAAMANEN A, LINJAMA M, VILENIUS M. On the pressure peak minimization in digital hydraulics [C]// The Tenth Scandinavian International Conference on Fluid Power. Tampere, Finland, 2007. http://URN.fi/URN:NBN:fi:tty-201403281139.

  24. LAAMANEN A, ANTTONEN P, LINJAMA M. Digital low control unit for controlling amount of water used for binding dust [C]// The Third Workshop on Digital Fluid Power. Tampere, Finland, 2010. http://URN.fi/URN:NBN:fi:tty-201404081142.

  25. HEIKKILÄ M, LINJAMA M. Improving damping characteristics of displacement controlled digital hydraulic system [C]// The Fifth Workshop on Digital Fluid Power, Tampere. Finland, 2012. https://trepo.tuni.fi/bitstream/handle/10024/116752/DFP12_proceedings.pdf?sequence=1#page=78.

  26. WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. Journal of Jilin University (Engineering Science), 2017, 47(6): 1775–1781. DOI: https://doi.org/10.13229/j.cnki.jdxbgxb201706014. (in Chinese)

    Google Scholar 

  27. YAO Jing, ZHANG Yang, CHEN Hao, KONG Xiang-dong. Flow characteristics of (D+A) combination controlled multi-pump hydraulic system [J]. Chinese Hydraulics & Pneumatics, 2017(8): 79–83. DOI: https://doi.org/10.11832/j.issn.1000-4858.2017.08.014. (in Chinese)

  28. ZHANG Yang. Control characteristics of D+A combined multi-pump controlled system [D]. Qinhuangdao: Yanshan University, College of Mechanical Engineering, 2017. https://xueshu.baidu.com/usercenter/paper/show?paperid=1s1k0pp0md3w0gv0e22b0j70m2114745&site=xueshu_se. (in Chinese)

  29. LIU Tao, SUN Hui, JIANG Ji-hai. Investigation to simulation of control strategy of parallel hydraulic hybrid vehicles based on backward modeling [C]// 2009 International Conference on Mechatronics and Automation. Changchun, China: IEEE Conference Publications, 2009: 551–556. DOI: https://doi.org/10.1109/ICMA.2009.5246640.

  30. LIU Xin-hui, WANG Wei, LIU Xiao-feng. Research for energy management mode of parallel hydraulic hybrid vehicle [C]// Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE Conference Publications, 2011: 3824–3827. DOI. https://doi.org/10.1109/ICMA.2009.5246640.

  31. LUMKES J H, FRONCZAK F J. Design simulation and validation of a bond graph model and controller to switch between pump and motor operation using four on/off valves with a hydraulic axial piston pump/motor [C]// Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). IEEE Conference Publications, 2000: 3605–3609. DOI: https://doi.org/10.1109/ACC.2000.879242.

  32. WANG Ji-sen, WANG Hai-tao, LI Shi-hui. The parameter analysis and simulation of accumulator in hydraulic test bench [J]. Machine Tools & Hydraulics, 2010, 38(15): 89–91. DOI: https://doi.org/10.3969/j.issn.1001-3881.2010.15.028. (in Chinese)

    Google Scholar 

  33. KHALKHALI A, SHOJAEEFARD M H, DAHMARDEH M, SOTOUDEH H. Optimal design and applicability of electric power steering system for automotive platform [J]. Journal of Central South University, 2019, 26(4): 839–851. DOI: https://doi.org/10.1007/s11771-019-4053-3.

    Article  Google Scholar 

  34. LIU P. Multi–attribute decision–making method research based on interval vague set and TOPSIS method [J]. Ukio Technologinis Ir Ekonominis Vystymas, 2009, 15(3): 453–463. DOI: https://doi.org/10.3846/1392-8619.2009.15.453-463.

    Google Scholar 

  35. ASHRAF Q M, HABAEBI M H, ISLAM M R. TOPSIS-Based service arbitration for autonomic Internet of things [J]. IEEE Access, 2016, 4: 1313–1320. DOI: https://doi.org/10.1109/ACCESS.2016.2545741.

    Article  Google Scholar 

  36. XIA Yi-min, LIN Lai-kuang, WU Dan, JIA Lian-hui, CHEN Zhuo, BIAN Zhang-kuo. Geological adaptability matching design of disc cutter using multicriteria decision making approaches [J]. Journal of Central South University, 2018, 25(4): 843–854. DOI: https://doi.org/10.1007/s11771-018-3788-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang  (王昕) or Xin-hui Liu  (刘昕晖).

Additional information

Foundation item

Project(51405183) supported by the National Natural Science Foundation of China

Contributors

The idea and the overarching research goals were developed by WANG Xin and LIU Xin-hui. WANG Xin and LI Chun-shuang performed the theoretical derivation. WANG Xin, LI Chun-shuang, and QI Hai-bo provided and analyzed the experiment data. LIU Xin-yu provided suggestions and ideas on the control method. The initial draft of the manuscript was written by WANG Xin and LI Chun-shuang. LIU Xin-yu edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

LI Chun-shuang, WANG Xin, QI Hai-bo, LIU Xin-yu and LIU Xin-hui declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cs., Wang, X., Qi, Hb. et al. Pressure performance improvement by dual-mode control in digital pump/motor. J. Cent. South Univ. 27, 2628–2642 (2020). https://doi.org/10.1007/s11771-020-4487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4487-7

Key words

关键词

Navigation