Skip to main content
Log in

Seismic response of tunnel under normal fault slips by shaking table test technique

跨活断层隧道地震响应模型试验

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.

摘要

穿越地震活跃带内的滑动活断层山岭隧道, 极易受到活断层滑动和地震作用。 研究断层滑动和 地震作用下隧道动力学响应很有必要。 本文设计了三维活断层滑动装置,通过振动台模型试验研究了 活断层滑动作用下隧道地震性能。 结果表明, 在断层滑动和地震共同作用下, 水平垂直隧道轴线地震 波引起隧道衬砌侧壁产生较大响应, 竖直方向地震波引起隧道衬砌拱顶产生较大响应,隧道衬砌加速 度响应值受断层滑动量影响较小。 水平垂直隧道轴线地震波引起的隧道断层段衬砌侧壁受拉应变较 大, 且随着断层滑移量的增加而增加, 其他位置拉应变较小。 竖直方向地震波引起的隧道断层段衬砌 拱顶和拱底外壁受拉应变较大, 且随着断层滑移量的增加而增加, 其他位置拉应变较小。断层滑动对 隧道整体刚度产生一定程度的影响, 使隧道的整体刚度在地震激励作用后,出现明显的降低。本文结 果可为隧道震害的防治措施及抗减震设计提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Zheng-zheng, ZHANG Zhe. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake [J]. Soil Dynamics and Earthquake Engineering, 2013, 45(2): 45–55. DOI: https://doi.org/10.1016/j.soildyn.2012.11.002.

    Article  Google Scholar 

  2. YU Hai-tao, CHEN Jun-tao, BOBET A, YUAN Yong. Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake [J]. Tunnelling and Underground Space Technology, 2016, 54: 102–116. DOI: https://doi.org/10.1016/j.tust.2016.02.008.

    Article  Google Scholar 

  3. SHEN Yu-sheng, GAO Bo, YANG Xiao-ming, TAO Shuang-jiang. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake [J]. Engineering Geology, 2014, 180: 85–98. DOI: https://doi.org/10.1016/j.enggeo.2014.07.017.

    Article  Google Scholar 

  4. LI Tian-bin. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction [J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 297–308. DOI: https://doi.org/10.1007/s10064-011-0367-6.

    Article  Google Scholar 

  5. WANG W L, WANG T T, SU J J, LIN C H, SENG C R, HUANG T H. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake [J]. Tunnelling and Underground Space Technology, 2001, 16: 133–150. DOI: https://doi.org/10.1016/S0886-7798(01)00047-5.

    Article  Google Scholar 

  6. HASHASH Y M, HOOK J J, SCHMIDT B, YAO I C. Seismic design and analysis of underground structures [J]. Tunnelling and Underground Space Technology, 2001, 16: 247–293. DOI: https://doi.org/10.1016/S0886-7798(01)00051-7.

    Article  Google Scholar 

  7. KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults [J]. Tunnelling and Underground Space Technology, 2016, 51: 108–119. DOI: https://doi.org/10.1016/j.tust.2015.10.005.

    Article  Google Scholar 

  8. KIANI M, GHALANDARZADEH A, AKHLAGHI T, AHMADI M. Experimental evaluation of vulnerability for urban segmental tunnels subjected to normal surface faulting [J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 28–37. DOI: https://doi.org/10.1016/j.soildyn.2016.07.012.

    Article  Google Scholar 

  9. MA Y, SHENG Qian, ZHANG Gui-min, CUI Zhen. A 3D discrete-continuum coupling approach for investigating the deformation and failure mechanism of tunnels across an active fault: A case study of Xianglushan tunnel [J]. Applied Sciences, 2019, 8(9): 11–25. DOI: https://doi.org/10.3390/app9112318.

    Google Scholar 

  10. LIU Xue-zeng, LI Xue-feng, SANG Yun-long, LIN Liang-lun. Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels [J]. Tunnelling and Underground Space Technology, 2015, 49: 417–425. DOI: https://doi.org/10.1016/j.tust.2015.05.010.

    Article  Google Scholar 

  11. ZHANG Zhi-qiang, CHEN Fang-fang, LI Ning, SWOBODA G, LIU Nai-fei. Influence of fault on the surrounding rock stability of a tunnel: Location and thickness [J]. Tunnelling and Underground Space Technology, 2017, 61: 1–11. DOI: https://doi.org/10.1016/j.tust.2016.09.003.

    Article  Google Scholar 

  12. KUN M, ONARGAN T. Influence of the fault zone in shallow tunneling: A case study of Izmir Metro Tunnel [J]. Tunnelling and Underground Space Technology, 2013, 33: 34–45. DOI: https://doi.org/10.1016/j.tust.2012.06.016.

    Article  Google Scholar 

  13. XIN Chun-lei, GAO Bo, WEN Gao-ming, ZHOU Jia-mei, SHEN Yu-sheng, QUAN Xiao-juan. Study on seismic failure characteristics and anti-shock reduction measures of straddle-slip fault tunnel [J]. Journal of Vibration Engineering, 2016, 29(4): 694–703. DOI: https://doi.org/10.16385/j.cnki.issn.1004-4523.2016.04.017. (in Chinese)

    Google Scholar 

  14. XIN Chun-lei, GAO Bo, WANG Ying-xue, ZHOU Jia-mei, SHEN Yu-sheng. Shaking table test on deformable aseismic and damping measures for fault-crossing tunnel structures [J]. Rock and Soil Mechanics, 2015, 36(4): 1041–1049. DOI: https://doi.org/10.16285/j.rsm.2015.04.019. (in Chinese)

    Google Scholar 

  15. XIN Chun-lei, GAO Bo, ZHOU Jia-mei. SHEN Yu-sheng, QUAN Xiao-juan. Shaking table tests on performances of anti-seismic and damping measures for fault-crossing tunnel structures [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1414–1422. DOI: https://doi.org/10.11779/CJGE201408006. (in Chinese)

    Google Scholar 

  16. YAN Gao-ming, GAO Bo, SHENG Yu-sheng, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Shaking table test on seismic performances of newly designed joints for mountain tunnels crossing faults [J]. Advances in Structural Engineering, 2020, 23(2): 248–262. DOI: https://doi.org/10.1177/1369433219868932.

    Article  Google Scholar 

  17. MA Ju, DONG Long-jun, ZHAO Guo-yan, LI Xi-bing. Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine [J]. Rock Mechanics and Rock Engineering, 2019, 52: 1887–1901. DOI: https://doi.org/10.1007/s00603-018-1631-x.

    Article  Google Scholar 

  18. ANASTASOPOULOS L, GEROLYMOS N, DROSOS V, GEORGARAKOS T, KOURKOULIS R, GAZETAS G. Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking [J]. Bulletin of Earthquake Engineering, 2008, 9(6): 213–239. DOI: https://doi.org/10.1007/s10518-007-9055-0.

    Article  Google Scholar 

  19. FANG Lin, JIANG Shu-ping, LIN Zhi, WANG Fang-qi. Shaking table model test study of tunnel through fault [J]. Rock and Soil Mechanics, 2011, 32(9): 2709–2820. DOI: https://doi.org/10.1111/j.1759-6831.2010.00113.x. (in Chinese)

    Google Scholar 

  20. LIU Li-biao, WANG Yong-fu, LIU Fang, ZHOU Jie. Shaking table model tests on the influence of fault strike on the seismic responses of tunnels [J]. Journal of Vibration and Shock, 2017, 36(21): 196–201. DOI: https://doi.org/10.13465/j.cnki.jvs.2017.21.029. (in Chinese)

    Google Scholar 

  21. BAKER B H, WOHLENBERG J. Structure and evolution of the kenya rift valley [J]. Nature, 1971, 229(5286): 538–542. DOI: https://doi.org/10.1038/229538a0.

    Article  Google Scholar 

  22. MACDONALD R. Petrological evidence regarding the evolution of the kenya rift valley [J]. Tectonophysics, 1994, 236(1–4): 373–390. DOI: https://doi.org/10.1016/0040-1951(94)90185-6.

    Article  Google Scholar 

  23. LAI Hong-peng, XIE Yong-li, YANG Xiao-hua. Model test study on section form of highway tunnel lining [J]. Chinese Journal of Geotechnical Engineering, 2006, 63(28): 740–744. DOI: https://doi.org/10.3321/j.issn:1000-4548.2006.06.012. (in Chinese)

    Google Scholar 

  24. PENG Shu-quan, WANG Fan, LI Xi-bing, FAN Ling, GONG Feng-qiang. A microbial method for improving salt swelling behavior of sulfate saline soil by an experimental study [J]. Alexandria Engineering Journal, 2019, 58: 1353–1366. DOI: https://doi.org/10.1016/j.aej.2019.11.006.

    Article  Google Scholar 

  25. PENG Shu-quan, WANG Fan, LI Xi-bing, FAN Ling. Experimental research on employed expanded polystyrene (EPS) for lightened sulfate heave of subgrade by thermal insulation properties [J]. Geotextiles and Geomembranes, 2020, 2: 9–18. DOI: https://doi.org/10.1016/j.geotexmem.2020.02.009.

    Google Scholar 

  26. LI Yu-shu, LI Tian-bin, WANG Dong, XU Hua, LIU Ji. Large-scale shaking table model test for vibration-absorption measures of portal section Huangcaoping tunnel No. 2 [J]. Journal of Rock Mechanics and Engineering, 2009, 28(6): 1128–1136. DOI: https://doi.org/10.3321/j.issn:1000-6915.2009.06.006. (in Chinese)

    Google Scholar 

  27. GUAN Zhen-chang, ZHOU Yi, GOU Xiao-dong, HUANG Hong-wei, WU Xue-zhen. The seismic responses and seismic properties of large section mountain tunnel based on shaking table tests [J]. Tunnelling and Underground Space Technology, 2019, 90: 383–393. DOI: https://doi.org/10.1016/j.tust.2019.05.017.

    Article  Google Scholar 

  28. CHEN Jian-yun, LI Jing, SUN Sheng-nan, SU Zhi-bin. Experimental and numerical analysis of submerged floating tunnel [J]. Journal of Central South University, 2012, 19: 2949–2957. DOI: https://doi.org/10.1007/s11771-012-1363-0.

    Article  Google Scholar 

  29. CHEN Qing-jun, YUAN Wei-ze, LI Ying-cheng, CAO Li-ya. Dynamic response characteristics of super high-rise buildings subjected to long-period ground motions [J]. Journal of Central South University, 2013, 30: 1341–1353. DOI: https://doi.org/10.1007/s11771-013-1621-9.

    Article  Google Scholar 

  30. XIN Chun-lei, WANG Zheng-zheng, GAO Bo. Shaking table tests on seismic response and damage mode of tunnel linings in diverse tunnel-void interaction states [J]. Tunnelling and Underground Space Technology, 2018, 77: 295–304. DOI: https://doi.org/10.1016/j.tust.2018.03.010.

    Article  Google Scholar 

  31. SHAO Run-meng, ZHAO Bo-ming. Longitudinal seismic response of large sectional shield tunnel [C]// Advances in Environmeatal Vibration. Beijing: Science Press, 2011: 313–319.

    Google Scholar 

  32. LIU Ke-wei, LI Xu-dong, HAO Hong, LI Xi-bing, SHA Yan-yan, WANG Wei-hua, LIU Xi-ling. Study on the raising technique using one blast based on the combination of long-hole presplitting and vertical crater retreat multiple-deck shots [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 41–58. DOI: https://doi.org/10.1016/j.ijrmms.2018.11.012.

    Article  Google Scholar 

  33. LIU Ke-wei, YANG Jia-cai, LI Xi-bing, HAO Hong, LI Qi-yue, LIU Zhi-xiang, WANG Chun-yi. Study on the long-hole raising technique using one blast based on vertical crater retreat multiple deck shots [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 52–67. DOI: https://doi.org/10.1016/j.ijrmms.2018.06.020.

    Article  Google Scholar 

  34. XIN Chun-lei, WANG Zheng-zheng, ZHOU Jia-mei, GAO Bo. Shaking table tests on seismic behavior of polypropylene fiber reinforced concrete tunnel lining [J]. Tunnelling and Underground Space Technology, 2019, 88: 1–15. DOI: https://doi.org/10.1016/j.tust.2019.02.019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-quan Peng  (彭述权).

Additional information

Foundation item: Project(51674287) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Chen, Jl., Peng, Sq. et al. Seismic response of tunnel under normal fault slips by shaking table test technique. J. Cent. South Univ. 27, 1306–1319 (2020). https://doi.org/10.1007/s11771-020-4368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4368-0

Key words

关键词

Navigation