Skip to main content
Log in

Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression

7055 铝合金热压缩变形修正本构模型及热加工性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation, hot compression tests at different temperatures and strain rates are conducted. True stress-strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature. For Arrhenius constitutive equation, each material parameter is set as a constant, which will bring forth large error for predicting flow behavior. In this work, material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy. The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy. The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map. Meanwhile, proper processing parameters to avoid flow instability can be easily acquired in instability map. According to the processing map, optimized processing parameters of 7055 aluminium alloy are temperature of 673–723 K and strain rate of 0.01–0.4 s−1, during which its efficiency of power dissipation is over 30%. Finite element method (FEM) is used to obtain optimized parameter in hot rolling process on the basis of processing map.

摘要

为了获得热变形中7055 铝合金流变行为及热加工性, 开展材料在不同温度和应变速率下热压 缩实验. 基于实验获得7055 铝合金在不同变形条件下真应力-真应变曲线, 流变应力随着应变速率的 升高和温度的降低而增大. Arrhenius 双曲正弦本构方程中每个材料参数均设置为常数, 预测材料流变 行为时误差较大. 本文建立修正的Arrhenius 本构方程, 能更准确地预测材料高温流变行为, 根据热 压缩实验结果, 修正方程中每个材料参数均拟合为温度和应变速率的函数. 同时, 建立了7055 铝合 金热加工图, 分析了温度和应变速率对能量耗散及流变失稳因子的作用规律. 通过热加工图, 能获得 不同变形条件下材料主导变形机制; 通过能量耗散图, 能获得高效率的能量耗散; 通过流变失稳图能 获得合理的工艺参数, 避免热加工中的流变失稳现象. 通过热加工图, 可获得较优的7055 铝合金热 变形参数: 变形温度673∼723 K, 应变速率0.01∼0.4 s1, 在该参数范围内能量耗散率超过30%. 基于 热变形图 采用有限元模型获得了该材料热轧变形较优的工艺参数.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HEINZ A, HASZLER A, KEIDEL C, MOLDENHAUER S, BENEDICTUS R, MILLER W S. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280(1): 102–107. DOI: https://doi.org/10.1016/s0921-5093(99)00674-7.

    Article  Google Scholar 

  2. QIAN Dong-sheng, PENG Ya-ya, DENG Jia-dong. Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression [J]. Journal of Central South University, 2017, 24(2): 284–295. DOI: https://doi.org/10.1007/s11771-017-3429-5.

    Article  Google Scholar 

  3. WANG Meng-han, WANG Gen-tian, WANG Rui. Flow stress behavior and constitutive modeling of 20MnNiMo low carbon alloy [J]. Journal of Central South University, 2016, 23(8): 1863–1872. DOI: https://doi.org/10.1007/s11771-016-3241-7.

    Article  Google Scholar 

  4. LI Bo, PAN Qing-lin, LI Chen, ZHANG Zhi-ye, YIN Zhi-min. Hot compressive deformation behavior and constitutive relationship of Al-Zn-Mg-Zr alloy with trace amounts of Sc [J]. Journal of Central South University, 2013, 20(11): 2939–2946. DOI: https://doi.org/10.1007/s11771-013-1816-0.

    Article  Google Scholar 

  5. CISSE C, ZAKI W, BEN ZINEB T. A review of constitutive models and modeling techniques for shape memory alloys [J]. International Journal of Plasticity, 2016, 76: 244–284. DOI: https://doi.org/10.1016/j.ijplas.2015.08.006.

    Article  Google Scholar 

  6. WEI Guo-bing, PENG Xiao-dong, HU Fa-ping, HADADZADEH A, YANG Yan, XIE Wei-dong, WELLS M A. Deformation behavior and constitutive model for dual-phase Mg-Li alloy at elevated temperatures [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 508–518. DOI: https://doi.org/10.1016/S1003-6326(16)64139-0.

    Article  Google Scholar 

  7. ZHANG Peng, YI Cen, CHEN Gang, QIN He-yong, WANG Chuan-jie. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy [J]. Metals, 2016, 6(7): 161. DOI: https://doi.org/10.3390/met6070161.

    Article  Google Scholar 

  8. WANG L, LIU F, CHENG J J, ZUO Q, CHEN C F. Arrhenius-type constitutive model for high temperature flow stress in a nickel-based corrosion-resistant alloy [J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1394–1406. DOI: https://doi.org/10.1007/s11665-016-1986-7.

    Article  Google Scholar 

  9. CAI Jun, SHI Jia-min, WANG Kuai-she, LI Fu-guo, WANG Wen, WANG Qing-juan, LIU Ying-ying. A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression [J]. International Journal of Materials Research, 2017, 108(7): 527–541. DOI: https://doi.org/10.3139/146.111514.

    Article  Google Scholar 

  10. LIN Y C, NONG Fu-qi, CHEN Xiao-min, CHEN Dong-dong, CHEN Ming-song. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy [J]. Vacuum, 2017, 137: 104–114. DOI: https://doi.org/10.1016/j.vacuum.2016.12.022.

    Article  Google Scholar 

  11. XIAO Dan, PENG Xiao-yan, LIANG Xiao-peng, DENG Ying, XU Guo-fu, YIN Zhi-min. Research on constitutive models and hot workability of as-homogenized Al-Zn-Mg-Cu alloy during isothermal compression [J]. Metals and Materials International, 2017, 23(3): 591–602. DOI: https://doi.org/10.1007/s12540-017-6526-y.

    Article  Google Scholar 

  12. CAI Jun, WANG Kuai-she, HAN Ying-ying. A comparative study on Johnson cook, modified zerilli-Armstrong and Arrhenius-type constitutive models to predict high-temperature flow behavior of Ti-6Al-4V alloy in α+β phase [J]. High Temperature Materials and Processes, 2016, 35(3): 297–307. DOI:https://doi.org/10.1515/htmp-2014-0157.

    Article  Google Scholar 

  13. YAN Liang-ming, SHEN Jian, LI Zhou-bing, LI Jun-peng, YAN Xiao-dong, MAO Bai-ping. Modeling for flow stress and processing map of 7055 aluminium alloy based on artificial neural networks [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7): 1296–1301. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ201007009.htm. (in Chinese)

    Google Scholar 

  14. ZHOU X, LIU R R, ZHOU H T, JIANG W X. A revisited study of the processing map and optimized workability of AZ61 magnesium alloy [J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2423–2429. DOI: https://doi.org/10.1007/s11665-017-2670-2.

    Article  Google Scholar 

  15. BABU K A, MANDAL S, ATHREYA C N, SHAKTHIPRIYA B, SARMA V S. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel [J]. Materials & Design, 2017, 115: 262–275. DOI: https://doi.org/10.1016/j.matdes.2016.11.054.

    Article  Google Scholar 

  16. JIN Xue-ze, XU Wen-chen, SHAN De-bin, LIU Chang, ZHANG Qi. Deformation behavior, microstructure evolution and hot workability of Mg-3.7Gd-2.9Y-0.7Zn-0.7Zr alloy [J]. Metals and Materials International, 2017, 23(3): 434–443. DOI: https://doi.org/10.1007/s12540-017-6352-2.

    Article  Google Scholar 

  17. KUMAR N, KUMAR S, RAJPUT S K, NATH S K. Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel [J]. ISIJ International, 2017, 57(3): 497–505. DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2016-306.

    Article  Google Scholar 

  18. BASANTH K K, SAXENA K K, DEY S R, PANCHOLI V, BHATTACHARJEE A. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600) [J]. Journal of Alloys and Compounds, 2017, 691: 906–913. DOI: https://doi.org/10.1016/j.jallcom.2016.08.301.

    Article  Google Scholar 

  19. RIEIRO I, CARSÍ M, RUANO O A. A new stability criterion for the hot deformation behavior of materials: application to the AZ31 magnesium alloy [J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3445–3460. DOI: https://doi.org/10.1007/s11661-017-4102-1.

    Article  Google Scholar 

  20. TAO Zhang, WU Yun-xin, GONG Hai, SHI Wen-ze, JIANG Fang-min. Flow stress behavior and constitutive model of 7055 aluminum alloy during hot plastic deformation [J]. Mechanics, 2016, 22(5): 359–365. DOI: https://doi.org/10.5755/j01.mech.22.5.12527.

    Google Scholar 

  21. PRASAD Y V R K, GEGEL H L, DORAIVELU S M, MALAS J C, MORGAN J T, LARK K A, BARKER D R. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15(10): 1883–1892. DOI: https://doi.org/10.1007/BF02664902.

    Article  Google Scholar 

  22. PRASAD Y V R K, SESHACHARYULU T. Processing maps for hot working of titanium alloys [J]. Materials Science and Engineering A, 1998, 243 (1, 2)}: 82–88. DOI: https://doi.org/10.1016/S0921-5093(97)00782-X.

    Article  Google Scholar 

  23. WANG Zhe, WANG Xin-nan, ZHU Zhi-shou. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy [J]. Journal of Alloys and Compounds, 2017, 692: 149–154. DOI: https://doi.org/10.1016/j.jallcom.2016.09.012

    Article  Google Scholar 

  24. EZATPOUR H R, SAJJADI S A, SABZEVAR M H, CHAICHI A, EBRAHIMI G R. Processing map and microstructure evaluation of AA6061/AhO3 nanocomposite at different temperatures [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1248–1256. DOI: https://doi.org/10.1016/S1003-6326(17)60145-6.

    Article  Google Scholar 

  25. WANG S, HOU L G, LUO J R, ZHANG J S, ZHUANG L Z. Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map [J]. Journal of Materials Processing Technology, 2015, 225: 110–121. DOI: https://doi.org/10.1016/j.jmatprotec.2015.05.018.

    Article  Google Scholar 

  26. HU H E, WANG X Y, DENG L. Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive equation [J]. Materials Science and Technology, 2014, 30(11): 1321–1327. DOI: https://doi.org/10.1179/1743284714Y.0000000569

    Article  Google Scholar 

  27. HU H E, WANG X Y, DENG L. An approach to optimize size parameters of forging by combining hot-processing map and FEM [J]. Journal of Materials Engineering and Performance, 2014, 23(11): 3887–3895. DOI: https://doi.org/10.1007/s11665-014-1182-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang  (张涛).

Additional information

Foundation item: Project(51175257) supported by National Natural Science Foundation of China; Project(BK20170785) supported by the Natural Science Foundation of Jiangsu Province, China; Project(BE2016179) supported by Science and Technology Planning Project of Jiangsu Province, China; Project(Kfkt2017-08) supported by Open Research Fund of State Key Laboratory for High Performance Complex Manufacturing, Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, Sh., Li, L. et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression. J. Cent. South Univ. 26, 2930–2942 (2019). https://doi.org/10.1007/s11771-019-4225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4225-1

Key words

关键词

Navigation