Skip to main content
Log in

A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behavior of AZ61 magnesium alloy was studied by hot compression testing in the temperature range from 250 to 400 °C with strain rates from 10−3 to 1 s−1. Typical flow stress/true strain curves with the features of dynamic recrystallization (DRX) have been obtained. According to the flow stress curves, the processing maps were constructed via the dynamic material model (DMM). The maps exhibit a domain of DRX at temperatures between 330 and 370 °C and strain rates ranging from 10−3 to 10−2 s−1. The corresponding extrusion deformation was carried out in this DRX region. Gleeble 3500, optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the microstructure evolution. The microstructure detection of this DRX region shows that the average grain size decreases with decreasing extrusion temperature. TEM observation further indicated that there are irregularly shaped subgrains with a high dislocation density, a dislocation network, the feature of dislocation pileup and an appearance of twin formation in the alloy hot-extruded using the parameters determined by our constructed processing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747

    Article  Google Scholar 

  2. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Texture and Stretch Formability of AZ61 and AM60 Magnesium Alloy Sheets Processed by High-Temperature Rolling, J. Alloys Compd., 2015, 632, p 94–102

    Article  Google Scholar 

  3. B.R. Sunil, K.V. Ganesh, P. Pavan, G. Vadapalli, C. Swarnalatha, P. Swapna, P. Bindukumar, and G. Pradeep Kumar Reddy, Effect of Aluminum Content on Machining Characteristics of AZ31 and AZ91 Magnesium Alloys During Drilling, J. Magn. Alloys, 2016, 4, p 15–21

    Article  Google Scholar 

  4. W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, Modified Fields-Backofen Model for Constitutive Behavior of as-Cast AZ31B Magnesium Alloy During Hot Deformation, Mater. Des., 2016, 106, p 120–132

    Article  Google Scholar 

  5. G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059

    Article  Google Scholar 

  6. S. Mironov, T. Onuma, Y.S. Sato, and H. Kokawa, Microstructure Evolution During Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2015, 100, p 301–312

    Article  Google Scholar 

  7. H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang, Hot Workability Characteristics of Magnesium Alloy AZ80-A Study Using Processing Map, Mater. Sci. Eng. A, 2010, 527, p 2022–2026

    Article  Google Scholar 

  8. L.C. Tsao, Y.T. Huang, and K.H. Fan, Flow Stress Behavior of AZ61 Magnesium Alloy During Hot Compression Deformation, Mater. Des., 2014, 53, p 865–869

    Article  Google Scholar 

  9. M.G. Jiang, H. Yan, L. Gao, and R.S. Chen, Microstructural Evolution of Mg-7Al-2Sn Mg Alloy During Multi-directional Impact Forging, J. Magn. Alloys, 2015, 3, p 180–187

    Article  Google Scholar 

  10. H. Zhou, X. Zeng, L. Liu, Y. Zhang, Y. Zhu, and W. Ding, Effect of Cerium on Microstructures and Mechanical Properties of AZ61 Wrought Magnesium Alloy, J. Mater. Sci., 2004, 3, p 7061–7066

    Article  Google Scholar 

  11. H.T. Zhou, X.Q. Zeng, L.L. Liu, J. Dong, Q.D. Wang, W.J. Ding, and Y.P. Zhu, Microstructural Evolution of AZ61 Magnesium Alloy During Hot Deformation, Mater. Sci. Technol., 2004, 20, p 1397–1402

    Article  Google Scholar 

  12. H.T. Zhou, C.M. Liu, and M.A. Chen, Constitutive Model Development and Hot Extrusion Simulation for AZ61 Magnesium Alloy, Mater. Sci. Technol., 2006, 22, p 597–603

    Article  Google Scholar 

  13. C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Mater. Trans. A, 1995, 26, p 181–190

    Article  Google Scholar 

  14. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  15. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries, Acta Mater., 1999, 47, p 2047–2057

    Article  Google Scholar 

  16. H. Mirzadeh, Constitutive Analysis of Mg-Al-Zn Magnesium Alloys During Hot Deformation, Mech. Mater., 2014, 77(77), p 80–85

    Article  Google Scholar 

  17. H. Mirzadeh, Constitutive Behaviors of Magnesium and Mg-Zn-Zr Alloy During Hot Deformation, Mater. Chem. Phys., 2015, 152, p 123–126

    Article  Google Scholar 

  18. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate Controlling Mechanisms During Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning, Mater. Des., 2015, 68, p 228–231

    Article  Google Scholar 

  19. T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 1973, 4(3), p 765–775

    Google Scholar 

  20. Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208, p 29–34

    Article  Google Scholar 

  21. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi, Improvement of Stretch Formability of Mg-3Al-1Zn Alloy Sheet by High Temperature Rolling at Finishing Pass, J. Alloys Compd., 2011, 509, p 7579–7584

    Article  Google Scholar 

  22. A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng., A, 2010, 527, p 5467–5473

    Article  Google Scholar 

  23. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  24. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  25. N. Srinivasan, Y.V.R.K. Prasad, and P. Rama, Rao, Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map, Mater. Sci. Eng. A, 2008, 476, p 146–156

    Article  Google Scholar 

  26. W.P. Peng, P.J. Li, P. Zeng, and L.P. Lei, Hot Deformation Behavior and Microstructure Evolution of Twin-Roll-Cast Mg-2.9Al-0.9Zn Alloy: A Study with Processing Map, Mater. Sci. Eng. A, 2008, 494, p 173–178

    Article  Google Scholar 

  27. Y.V.R.K. Prasad and K.P. Rao, Processing Maps for Hot Deformation of Rolled AZ31 Magnesium Alloy Plate: Anisotropy of Hot Workability, Mater. Sci. Eng., A, 2008, 487, p 316–327

    Article  Google Scholar 

  28. F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 735–744

    Article  Google Scholar 

  29. Y. Xu, L. Hu, T. Deng, and L. Ye, Hot Deformation Behavior and Processing Map of As-Cast AZ61 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 559, p 528–533

    Article  Google Scholar 

  30. H.Y. Wu, C.T. Wu, J.C. Yang, and M.J. Lin, Hot Workability Analysis of AZ61 Mg Alloys with Processing Maps, Mater. Sci. Eng. A, 2014, 607, p 261–268

    Article  Google Scholar 

  31. M. Shahzad and L. Wagner, Influence of Extrusion Parameters on Microstructure and Texture Developments, and Their Effects on Mechanical Properties of the Magnesium Alloy AZ80, Mater. Sci. Eng. A, 2009, 506, p 141–147

    Article  Google Scholar 

  32. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2002, 337, p 121–133

    Article  Google Scholar 

  33. A. Seeger and W.G. Mayer, Moderne Probleme der Metallphysik, Phys. Today, 1965, 18, p 54

    Article  Google Scholar 

  34. H.J. McQueen and O.C. Celliers, Application of Hot Workability Studies to Extrusion Processing. Part III: Physical and Mechanical Metallurgy of Al-Mg-Si and Al-Zn-Mg Alloys5, Can. Metall. Q., 1997, 36, p 73–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, R.R., Zhou, H.T. et al. A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy. J. of Materi Eng and Perform 26, 2423–2429 (2017). https://doi.org/10.1007/s11665-017-2670-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2670-2

Keywords

Navigation