Skip to main content
Log in

Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface

Cu-C6H9NaO7 和 Ag-C6H9NaO7 纳米流体在非线性收缩表面流动的多重解

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Model of Casson nanofluid flow over a nonlinear shrinking surface is considered. Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver. The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations. The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order. In order to determine the stability of the dual solutions obtained, stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable). Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution.

摘要

本文研究了Casson 纳米流体在一类非线性收缩表面的流动模型。将 Tiwari 和 Das 模型应用于 含铜、银的海藻酸钠纳米流体中, 通过适当的相似变换, 将考虑黏性耗散影响的控制非线性方程组转 化为常微分方程的边界值问题(BVPS)。将所得方程用打靶法转化为初值问题, 再用四阶 Runge-Kutta 法求解。为了确定所得到的对偶解的稳定性, 对第一(第二)解进行了稳定性分析, 发现第一(第二)解 是稳定的(不稳定的)和物理可实现的(不可实现的)。在第二解中, 随着 Casson 参数(β)的增加, 热边界 层的厚度增加, 温度也会升高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHAH N A. Viscous fluid dynamics, for scientists and engineers [M]. Lahore: A-One Publishers, 2012.

    Google Scholar 

  2. CHOI S U S, ESTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [J]. ASME-Publications, 1995, 231: 99–106.

    Google Scholar 

  3. MAHIAN O, KOLSI L, AMANI M, ESTELLÉ P, AHMADI G, KLEINSTREUER C, MARSHALL J S, SIAVASHI M, TAYLOR R A, NIAZMAND H, WONGWISES S. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamental and theory [J]. Physics Reports, 2018, 790: 1–48.

    Article  MathSciNet  Google Scholar 

  4. MAHIAN O, KOLSI L, AMANI M, ESTELLÉ P, AHMADI G, KLEINSTREUER C, MARSHALL J S, TAYLOR R A, ABU-NADA E, RASHIDI S, NIAZMAND H. Recent advances in modeling and simulation of nanofluid flows-part II: Applications [J]. Physics Reports, 2018, 791: 1–59.

    Article  MathSciNet  Google Scholar 

  5. LAAD M, JATTI V K S. Titanium oxide nanoparticles as additives in engine oil [J]. Journal of King Saud University-Engineering Sciences, 2016, 30: 116–122.

    Article  Google Scholar 

  6. ROSTAMI M N, DINARVAND S, POP I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid [J]. Chinese Journal of Physics, 2018, 56: 2465–2478.

    Article  Google Scholar 

  7. SHEIKHOLESLAMI M, HAYAT T, ALSAEDI A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders [J]. International Journal of Heat and Mass Transfer, 2017, 115: 981–991.

    Article  Google Scholar 

  8. BHATTI M M, RASHIDI M M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet [J]. Journal of Molecular Liquids, 2016, 221: 567–573.

    Article  Google Scholar 

  9. MISHRA S R, BHATTI M M. Simultaneous effects of chemical reaction and Ohmic heating with heat and mass transfer over a stretching surface: A numerical study [J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1137–1142.

    Article  Google Scholar 

  10. SIAVASHI M, RASAM H, IZADI A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2018: 1–7.

    Google Scholar 

  11. NAKHCHI M E, ESFAHANI J A. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape [J]. Powder Technology, 2018, 339: 1399–1415.

    Article  Google Scholar 

  12. HAYAT T, RASHID M, ALSAEDI A, AHMAD B. Flow of nanofluid by nonlinear stretching velocity [J]. Results in Physics, 2018, 8: 1104–1109.

    Article  Google Scholar 

  13. BUONGIORNO J. Convective transport in nanofluids [J]. Journal of Heat Transfer, 2006, 128(3): 240–250.

    Article  Google Scholar 

  14. KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3639–3653.

    Article  MATH  Google Scholar 

  15. NIELD D A, KUZNETSOV A V. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid [J]. International Journal of Heat and Mass Transfer, 2009, 52(25, 26): 5792–5795.

    Article  MATH  Google Scholar 

  16. TIWARI R K, DAS M K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids [J]. International Journal of Heat and Mass Transfer, 2007, 50(9, 10): 2002–2018.

    Article  MATH  Google Scholar 

  17. CAPONE F, RIONERO S. Brinkmann viscosity action in porous MHD convection [J]. International Journal of Non-Linear Mechanics, 2016, 85: 109–117.

    Article  Google Scholar 

  18. BACHOK N, ISHAK A, POP I. Boundary layer stagnationpoint flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid [J]. International Journal of Heat and Mass Transfer, 2012, 55: 8122–8128.

    Article  Google Scholar 

  19. RAHMAN M M, ROŞCA A V, POP I. Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno’s model [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1133–1143.

    Article  Google Scholar 

  20. AHMAD R, MUSTAFA M, HAYAT T, ALSAEDI A. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet [J]. Journal of Magnetism and Magnetic Materials, 2016, 407: 69–74.

    Article  Google Scholar 

  21. NIELD D A, KUZNETSOV A V. The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid [J]. International Journal of Heat and Mass Transfer, 2011, 54(1–3): 374–378.

    Article  MATH  Google Scholar 

  22. MATIN M H, POP I. Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall [J]. International Communications in Heat and Mass Transfer, 2013, 46: 134–141.

    Article  Google Scholar 

  23. AHMED T N, KHAN, I. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models [J]. Results in Physics, 2018, 8: 752–757.

    Article  Google Scholar 

  24. SHAHID A, BHATTI M M, BÉG O A, KADIR A. Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model [J]. Neural Computing and Applications, 2017, 30: 3467–3478.

    Article  Google Scholar 

  25. CASSON N. A flow equation for pigment-oil suspensions of the printing ink type [J]. Rheology of Disperse Systems, 1959, 4: 227–233.

    Google Scholar 

  26. SHEHZAD S A, HAYAT T, ALHUTHALI M, ASGHAR S. MHD three-dimensional flow of Jeffrey fluid with Newtonian heating [J]. Journal of Central South University, 2014, 21(4): 1428–1433.

    Article  Google Scholar 

  27. RAMZAN M, FAROOQ M, HAYAT T, ALSAEDI A, CAO J. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects [J]. Journal of Central South University, 2015, 22(2): 707–716.

    Article  Google Scholar 

  28. KUMAR M S, SANDEEP N, KUMAR B R, SALEEM S. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids [J]. Alexandria Engineering Journal, 2017, 57: 2027–2034.

    Article  Google Scholar 

  29. ABBAS T, BHATTI M M, AYUB M. Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(5): 519–527.

    Article  Google Scholar 

  30. MAHMOOD A, JAMSHED W, AZIZ A. Entropy and heat transfer analysis using Cattaneo-Christov heat flux model for a boundary layer flow of Casson nanofluid [J]. Results in Physics, 2018, 10: 640–649.

    Article  Google Scholar 

  31. ALI F, SHEIKH N A, KHAN I, SAQIB M. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model [J]. Journal of Magnetism and Magnetic Materials, 2017, 423: 327–336.

    Article  Google Scholar 

  32. KHALID A, KHAN I, KHAN A, SHAFIE S, TLILI I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis [J]. Case Studies in Thermal Engineering, 2018, 12: 374–380.

    Article  Google Scholar 

  33. RAZA J, ROHNI A M, OMAR Z. Triple solutions of Casson fluid flow between slowly expanding and contracting walls [J]. AIP Conference Proceedings, 2017, 1905(1): 030029.

    Article  Google Scholar 

  34. NAKAMURA M, SAWADA T. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis [J]. Journal of Biomechanical Engineering, 1988, 110(2): 137–143.

    Article  Google Scholar 

  35. ZAIB A, BHATTACHARYYA K, SHAFIE S. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid [J]. Journal of Central South University, 2015, 22: 4856–4863.

    Article  Google Scholar 

  36. ROŞCA A V, POP I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip [J]. International Journal of Heat and Mass Transfer, 2013, 60: 355–364.

    Article  Google Scholar 

  37. WEIDMAN P D, KUBITSCHEK D G, DAVIS A M J. The effect of transpiration on self-similar boundary layer flow over moving surfaces [J]. International Journal of Engineering Science, 2006, 44(11, 12): 730–737.

    Article  MATH  Google Scholar 

  38. ABBAS Z, MASOOD T, OLANREWAJU P O. Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition [J]. Journal of Central South University, 2015, 22(6): 2376–2384.

    Article  Google Scholar 

  39. MEGAHED A M. Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation [J]. Journal of Central South University, 2016, 23(4): 991–999.

    Article  Google Scholar 

  40. POSTELNICU A, POP I. Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge [J]. Applied Mathematics and Computation, 2011, 217(9): 4359–4368.

    Article  MathSciNet  MATH  Google Scholar 

  41. HARRIS S D, INGHAM D B, POP I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip [J]. Transport in Porous Media, 2009, 77(2): 267–285.

    Article  Google Scholar 

  42. ZHENG Lian-cun, LIANG Chen, ZHANG Xin-xin. Multiple values of skin friction for boundary layer separation flow in power law pseudoplastic fluids [J]. Journal of Central South University of Technology, 2007, 14(1): 218–220.

    Article  Google Scholar 

  43. ROHNI A M, AHMAD S, POP I. Note on Cortell’s nonlinearly stretching permeable sheet [J]. International Journal of Heat and Mass Transfer, 2012, 55(21, 22): 5846–5852.

    Article  Google Scholar 

  44. CORTELL R. Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall [J]. Meccanica, 2012, 47(3): 769–781.

    Article  MathSciNet  MATH  Google Scholar 

  45. HATAMI M, GANJI D D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods [J]. Case Studies in Thermal Engineering, 2014, 2: 14–22.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Universiti Utara Malaysia (UUM) for the moral and financial support in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, L.A., Omar, Z., Khan, I. et al. Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface. J. Cent. South Univ. 26, 1283–1293 (2019). https://doi.org/10.1007/s11771-019-4087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4087-6

Key words

关键词

Navigation