Skip to main content
Log in

Multiple solutions for the modified Fourier and Fick’s theories for Carreau nanofluid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present paper numerically investigated the dual solutions of Carreau nanofluids in the presence of Cattaneo–Christov double diffusion with focus on heat and mass transfer which contains the effects of Brownian motion and thermophoresis parameter. A nonlinearly shrinking sheet has been utilized to create the flow. The thermal and concentration diffusions are considered by introducing Cattaneo–Christov fluxes. This paper provides information about the energy and concentration equations which are constructed with the help of Cattaneo–Christov double-diffusion theory in the existence of Brownian motion parameter and thermophoresis parameter. The study showed the local similarity variables are used to renovate the governing equations into a set of nonlinear ordinary differential equations. The ascending differential system which is a collection of momentum, temperature and concentration equations is preserved through a numerical approach called the Runge–Kutta–Fehlberg integration technique. The study reveals that the multiple solutions occur for the different vital physical parameters, for example, suction parameter s, Weissenberg number We, Prandtl number Pr, velocity slip parameter \(\delta \), viscosity ratio parameter \(\beta ^{*}\), non-dimensional thermal relaxation time \(\delta _{e}\), Brownian motion parameter Nb and thermophoresis parameter Nt. Moreover, higher values of thermal relaxation time \(\delta _{e}\) decrease the temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U S Choi and J A Eastman ASME Int. Mech. Eng. Congr. Exposition, San Francisco (1995)

  2. J Buongiorno ASME J. Heat Transf. 128 240–250 (2006)

    Article  Google Scholar 

  3. M M Bhatti, A Zeeshan, D Tripathi and R Ellahi, Indian. J. Phys., 92(4) 423–430 (2018)

    Article  ADS  Google Scholar 

  4. M M Bhatti, A Zeeshan, R Ellahi and GC Shit, Adv Powder Tech. 29(5) 1189–1197 (2018)

    Article  Google Scholar 

  5. R Ellahi, A Zeeshan, N Shehzad and SZ Alamri, J. Mole. Liq 264 607–615 (2018)

    Article  Google Scholar 

  6. T Hayat, M Imtiaz and A Alsaedi J. Magn. Magn. Mater. 395 294–302 (2015)

    Article  ADS  Google Scholar 

  7. R Ellahi, SZ Alamri, A Basit and A Majeed J. Taibah Uni. Sci. 12(4) 476–482 (2018)

    Article  Google Scholar 

  8. M Khan, M Hussain and Hashim J. Magn. Magn. Mater. 412 63–68 (2016)

    Article  ADS  Google Scholar 

  9. K Hiemenz J. Dingler’s Polytech. 326 321–324 (1911)

    Google Scholar 

  10. A Majeed, A Zeeshan, S.Z Alamri and R Ellahi Neural Comput. Appl. 30(6) 1947–1955 (2018)

    Article  Google Scholar 

  11. M Khan, H Sardar and M M Gulzar Res. Phys. 8 524–531 (2018)

    Google Scholar 

  12. M Khan and H Sardar Res. Phys. 8 516–523 (2018)

    Google Scholar 

  13. J B J. Fourier, Paris 1822

  14. C Cattaneo Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3 83–101 (1948)

    Google Scholar 

  15. C I Christov Mech. Res. Commun. 36 481–486 (2009)

    Article  Google Scholar 

  16. B Straughan Int. J. Heat Mass Transf. 53 95–98 (2010)

    Article  Google Scholar 

  17. S A M Haddad Int. J. Heat Mass Transf. 68 659–668 (2014)

    Article  Google Scholar 

  18. T Hayat, T Muhammad, A Alsaedi and M Mustafa PLoS ONE 11 e 0155185 (2016)

    Article  Google Scholar 

  19. C Y Wang Int. J. Non-linear Mech. 43 377–382 (2008)

    Article  ADS  Google Scholar 

  20. T Fang, Int. J. Heat Mass Trans. 51 5838–5843 (2008)

    Article  Google Scholar 

  21. T Fang and J Zhang Acta Mech. 209 325–343 (2010)

    Article  Google Scholar 

  22. A Ishak, Y Y Lok and I Pop Chem. Eng. Commun. 197 1417–1427 (2010)

    Article  Google Scholar 

  23. M Khan, H Sardar, M M Gulzar and A S Alshomrani Res. Phys. 8 926–993 (2018)

    Google Scholar 

  24. H Sardar, M Khan and L Ahmad Int. J. Heat Mass Transf. 137 809–822 (2019)

    Article  Google Scholar 

  25. R Jhorar, D Tripathi, M M Bhatti and R Ellahi Indian J. Phys. 92(10) 1229–1238 (2018)

  26. P J Carreau Trans. Soc. Rheol. 16 99–127 (1972)

    Article  Google Scholar 

  27. N Shehzad, A Zeeshan and R Ellahi Commu. Theor. Phys. 69(6) (2018) 655–666

    Article  ADS  Google Scholar 

  28. M Hassan, M Marin, A Alsharif and R Ellahi Phys. Lett. A 382(38) 2749–2753 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  29. M Khan, M Irfan, L Ahmad and W A Khan Phys. Lett. A 382(34) 2334–2342 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  30. M Irfan, M Khan and W A Khan Phys. Lett. A 383(4) 376–382 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  31. C Fetecau, R Ellahi, M Khan and N A Shah J. Porous Media 21(7) 589–605 (2018)

    Article  Google Scholar 

  32. M Khan, H Sardar, M M Gulzar and A S Shomrani Results Phys. 8 926–932 (2018)

    Article  ADS  Google Scholar 

  33. M Khan and H Sardar Canad. J. Phys. 97 4400–4407 (2019)

    Google Scholar 

  34. M Khan, H Sardar and Hashim J. Mole. Liq. 272 474–480 (2018)

    Article  Google Scholar 

  35. H Sardar, M Khan and L Ahmad J. Braz. Soc. Mech. Eng. 41 69 (2019) https://doi.org/10.1007/s40430-018-1561-2

  36. H Sardar, M Khan and L Ahmad Canad. J. Phys. https://doi.org/10.1139/cjp-2018-0789.

  37. N Bachok, A Ishak and I Pop Phys. Lett. A 374 4075–4079 (2010)

  38. C Y Wang Phys. Fluids 15 1114–1121 (2003)

  39. S Liao Int. J. Heat Mass Transf. 48 2529–2539 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant number (R.G.P2/26/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humara Sardar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, H., Khan, M. & Alghamdi, M. Multiple solutions for the modified Fourier and Fick’s theories for Carreau nanofluid. Indian J Phys 94, 1939–1947 (2020). https://doi.org/10.1007/s12648-019-01628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01628-y

Keywords

PACS Nos.

Navigation