Skip to main content
Log in

Impact of anisotropic slip on the stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The characteristics of heat transfer in the three-dimensional stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid with anisotropic slip are investigated. The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations. The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system. This solving method is capable of generating more than one solutions when suitable initial guesses are proposed. The results are proven to have dual solutions, which consequently lead to the application of a stability analysis that verifies the achievability of the first solution. The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values. The skin friction increases with the addition of nanoparticles, while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B :

dimensionless slip parameters

C f :

coefficient of skin friction

c p :

specific heat at constant pressure

(pcp):

heat capacitance of the fluid

k :

fluid thermal conductivity

N1, N2 :

constants

Nu x :

local Nusselt number

Pr :

Prandtl number

Re x :

local Reynolds number

t :

time

T :

temperature of the fluid

T w :

temperature of the surface

T :

ambient temperature

S :

constant mass flux parameter

u,v,w, :

velocity components in the x-, y-, and z-directions, respectively

ue, ve, we :

velocity components of the free stream along the x-, y-, and z-axes, respectively

x, y, z :

Cartesian coordinates.

β :

coefficient of the thermal expansion

ω :

eigenvalue

ω 1 :

smallest eigenvalue

η :

similarity variable

θ :

dimensionless temperature

κ :

stretching/shrinking parameter

μ :

dynamic viscosity of the fluid

ν :

kinematic viscosity of the fluid

ρ :

density of the fluid

τ :

dimensionless time variable

τ w :

wall shear stress

ϕ 1 :

Al2O3 nanoparticle volume fraction

ϒ 2 :

Cu nanoparticle volume fraction.

f:

base fluid

nf:

nanofluid

hnf:

hybrid nanofluid

s1:

Al2O3 solid component

s2:

Cu solid component.

′:

differentiation with respect to η.

References

  1. ZHENG, Y., AHMED, N. A., and ZHANG, W. Heat dissipation using minimum counter flow jet ejection during spacecraft re-entry. Procedia Engineering, 49, 271–279 (2012)

    Google Scholar 

  2. FISHER, E. Extrusion of Plastics, Wiley, New York (1976)

    Google Scholar 

  3. RAUWENDAAL, C. Polymer Extrusion, Hanser Publications, Cincinnati (2001)

    Google Scholar 

  4. HIEMENZ, K. Die Grenzschicht an einem in den gleichförmingen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Politech Journal, 326, 321–324 (1911)

    Google Scholar 

  5. HOMANN, F. Der Einfluss grosser Zühigkeit bei der Strümung um den Zylinder und um die Kugel. Zeitschrift für Angewandte Mathematik und Mechanik, 16, 153–164 (1936)

    MATH  Google Scholar 

  6. HOWARTH, L. The boundary layer in three dimensional flow — part II, the flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 1433–1440 (1951)

    MathSciNet  MATH  Google Scholar 

  7. CHIAM, T. C. Stagnation-point flow towards a stretching plate. Journal of the Physical Society of Japan, 63, 2443–2444 (1994)

    Google Scholar 

  8. FAN, T., XU, H., and POP, I. Unsteady stagnation flow and heat transfer towards a shrinking sheet. International Communications in Heat and Mass Transfer, 37, 1440–1446 (2010)

    Google Scholar 

  9. LOK, Y. Y., AMIN, N., and POP, I. Non-orthogonal stagnation point flow towards a stretching sheet. International Journal of Non-Linear Mechanics, 41, 622–627 (2006)

    Google Scholar 

  10. MAHAPATRA, T. R. and GUPTA, A. S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer, 38, 517–521 (2002)

    Google Scholar 

  11. WANG, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377–382 (2008)

    Google Scholar 

  12. CHOI, C. H. and KIM, C. J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters, 96, 1–4 (2006)

    Google Scholar 

  13. WANG, C. Y. Flow over a surface with parallel grooves. Physics of Fluids, 15, 1114–1121 (2003)

    MATH  Google Scholar 

  14. SHARIPOV, F. and SELEZNEV, V. Data on internal rarefied gas flows. Journal of Physical and Chemical Reference Data, 27, 657–706 (1998)

    Google Scholar 

  15. HAFIDZUDDIN, E. H., NAZAR, R., ARIFIN, N. M., and POP, I. Effects of anisotropic slip on three-dimensional stagnation-point flow past a permeable moving surface. European Journal of Mechanics-B/Fluids, 65, 515–521 (2017)

    MathSciNet  MATH  Google Scholar 

  16. NAVIER, C. L. Mémorie sur les lois du lois du mouvement des fluides. Mémoires de l’Académie (royale) des Sciences de l’Institut de France, 6, 298–440 (1827)

    Google Scholar 

  17. MAXWELL, J. On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society, 170, 231–256 (1879)

    MATH  Google Scholar 

  18. WANG, C. Y. Stagnation flows with slip: exact solutions of the Navier-Stokes equations. Zeitschrift für Angewandte Mathematik und Physik, 54, 184–189 (2003)

    MathSciNet  MATH  Google Scholar 

  19. WANG, C. Y. Stagnation slip flow and heat transfer on a moving plate. Chemical Engineering Science, 61, 7668–7672 (2006)

    Google Scholar 

  20. RAO, I. J. and RAJAGOPAL, K. R. Effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica, 135, 113–126 (1999)

    MathSciNet  MATH  Google Scholar 

  21. JUSOH, R., NAZAR, R., and POP, I. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: a revised model. Physics of Fluids, 30, 033604 (2018)

    Google Scholar 

  22. SOID, S. K., ISHAK, A., and POP, I. MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary. Sains Malaysiana, 47, 2907–2916 (2018)

    Google Scholar 

  23. AZIZ, A. and JAMSHED, W. Unsteady mhd slip flow of non Newtonian Power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuos Dynamical Systems-Series S, 11, 617–630 (2018)

    MathSciNet  MATH  Google Scholar 

  24. NAGANTHRAN, K. and NAZAR, R. Effects of thermal radiation and slip on unsteady stagnation-point flow and heat transfer past a permeable shrinking sheet: a stability analysis. AIP Conference Proceedings, 2184, 060032 (2019)

    Google Scholar 

  25. JAMSHED, W. and AZIZ, A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results in Physics, 9, 195–205 (2018)

    Google Scholar 

  26. AZIZ, A., JAMSHED, W., and AZIZ, T. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity. Open Physics, 16, 123–136 (2018)

    Google Scholar 

  27. JAMALUDIN, A., NAZAR, R., and POP, I. Non-uniqueness of solutions to an MHD stagnation-point flow over an exponentially permeable stretching/shrinking sheet with velocity slip. Journal of Physics: Conference Series, 1366, 012040 (2019)

    Google Scholar 

  28. MAHMOOD, A., AZIZ, A., JAMSHED, W., and HUSSAIN, S. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity. Results in Physics, 7, 3425–3433 (2017)

    Google Scholar 

  29. WANG, C. Y. Stagnation flow on a plate with anisotropic slip. European Journal of Mechanics-B/Fluids, 38, 73–77 (2013)

    MathSciNet  MATH  Google Scholar 

  30. BELYAEV, A. V. and VINOGRADOVA, O. I. Electro-osmosis on anisotropic superhydrophobic surfaces. Physical Review Letters, 107, 1–4 (2011)

    Google Scholar 

  31. JUNG, T., CHOI, H., and KIM, J. Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. Journal of Fluid Mechanics, 790, R11–R112 (2016)

    Google Scholar 

  32. PEARSON, J. T., BILODEAU, D., and MAYNES, D. Two-pronged jet formation caused by droplet impact on anisotropic superhydrophobic surfaces. Journal of Fluids Engineering, 138, 2–6 (2016)

    Google Scholar 

  33. RAEES, A., RAEES-UL-HAQ, M., XU, H., and SUN, Q. Three-dimensional stagnation flow of a nanofluid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Applied Mathematical Modelling, 40, 4136–4150 (2016)

    MathSciNet  MATH  Google Scholar 

  34. RASHAD, A. M. Unsteady nanofluid flow over an inclined stretching surface with convective boundary condition and anisotropic slip impact. International Journal of Heat and Technology, 35, 82–90 (2017)

    Google Scholar 

  35. AL-BALUSHI, L. M., RAHMAN, M. M., and POP, I. Three-dimensional axisymmetric stagnationpoint flow and heat transfer in a nanofluid with anisotropic slip over a striated surface in the presence of various thermal conditions and nanoparticle volume fractions. Thermal Science and Engineering Progress, 2, 26–42 (2017)

    Google Scholar 

  36. ANUAR, N. S., BACHOK, N., and POP, I. A stability analysis of solutions in boundary layer flow and heat transfer of carbon nanotubes over a moving plate with slip effect. Energies, 11, 3243 (2018)

    Google Scholar 

  37. SADIQ, M. A. MHD Stagnation point flow of nanofluid on a plate with anisotropic slip. Symmetry, 11, 132 (2019)

    MATH  Google Scholar 

  38. KHASHI’IE, N. S., ARIFIN, N. M., NAZAR, R., HAFIDZUDDIN, E. H., WAHI, N., and POP, I. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies, 12, 1268 (2019)

    Google Scholar 

  39. ISHAK, A., NAZAR, R., and POP, I. Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux. Heat and Mass Transfer, 45, 563–567 (2009)

    Google Scholar 

  40. DAS, K. Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Engineering Journal, 5, 1207–1214 (2014)

    Google Scholar 

  41. SAKIADIS, B. C. Boundary-layer behavior on continuous solid surfaces: I, boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7, 26–28 (1961)

    Google Scholar 

  42. CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 647–647 (1970)

    Google Scholar 

  43. MIKLAVČIČ, M. and WANG, C. Y. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics, 64, 283–290 (2006)

    MathSciNet  MATH  Google Scholar 

  44. MAHABALESHWAR, U. S., VINAY KUMAR, P. N., and SHEREMET, M. Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. SpringerPlus, 5, 1901 (2016)

    Google Scholar 

  45. DEVI, S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419–433 (2017)

    MathSciNet  Google Scholar 

  46. HAYAT, T., NADEEM, S., and KHAN, A. U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal E, 41, 75 (2018)

    Google Scholar 

  47. SURESH, S., VENKITARAJ, K. P., SELVAKUMAR, P., and CHANDRASEKAR, M. Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54–60 (2012)

    Google Scholar 

  48. CHAMKHA, A. J., MIROSHNICHENKO, I. V., and SHEREMET, M. A. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. Journal of Thermal Science and Engineering Applications, 9, 041004 (2017)

    Google Scholar 

  49. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid nanofluid with stability analysis. Mathematics, 8, 784 (2020)

    Google Scholar 

  50. WAINI, I., ISHAK, A., and POP, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics (English Edition), 41(3), 507–520 (2020) https://doi.org/10.1007/s10483-020-2584-7

    Google Scholar 

  51. DEVI, S. S. U. and DEVI, S. P. Numerical investigation of three-dimensional hybrid CuAl2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490–496 (2016)

    Google Scholar 

  52. OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336 (2008)

    Google Scholar 

  53. MERKIN, J. H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. Journal of Engineering Mathematics, 14, 301–313 (1980)

    MathSciNet  MATH  Google Scholar 

  54. MERRILL, K., BEAUCHESNE, M., PREVITE, J., PAULLET, J., and WEIDMAN, P. Final steady flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 49, 4681–4686 (2006)

    MATH  Google Scholar 

  55. WEIDMAN, P. D., KUBITSCHEK, D. G., and DAVIS, A. M. J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730–737 (2006)

    MATH  Google Scholar 

  56. HARRIS, S. D., INGHAM, D. B., and POP, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media, 77, 267–285 (2009)

    Google Scholar 

  57. SHAMPINE, L. F., GLADWELL, I., and THOMPSON, S. Solving ODEs with Matlab, Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  58. BRINKMAN, H. C. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20, 571–581 (1952)

    Google Scholar 

Download references

Acknowledgements

The principal author wishes to acknowledge Universiti Kebangsaan Malaysia (UKM), Ministry of Higher Education (MoHE) Malaysia, and Universiti Teknikal Malaysia Melaka (UTEM) in support of the scholarship, and all authors wish to acknowledge the research university grant (No. DIP-2017-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainal, N.A., Nazar, R., Naganthran, K. et al. Impact of anisotropic slip on the stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid. Appl. Math. Mech.-Engl. Ed. 41, 1401–1416 (2020). https://doi.org/10.1007/s10483-020-2642-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2642-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation