Skip to main content
Log in

Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source

均相和非均相反应和热辐射对 Cu-水纳米流体在非均匀热源平板上磁流体力学的影响

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study presents the effect of non-uniform heat source on the magneto-hydrodynamic flow of nanofluid across an expanding plate with consideration of the homogeneous-heterogeneous reactions and thermal radiation effects. A nanofluid’s dynamic viscosity and effective thermal conductivity are specified with Corcione correlation. According to this correlation, the thermal conductivity is carried out by the Brownian motion. Similarity transformations reduce the governing equations concerned with energy, momentum, and concentration of nanofluid and then numerically solved. The influences of the effective parameters, e.g., the internal heat source parameters, the volume fraction of nanofluid, the radiation parameter, the homogeneous reaction parameter, the magnetic parameter, the heterogeneous parameter and the Schmidt number are studied on the heat and flow transfer features. Further, regarding the effective parameters of the present work, the correlation for the Nusselt number has been developed. The outcomes illustrate that with the raising of the heterogeneous parameter and the homogeneous reaction parameter, the concentration profile diminishes. In addition, the outcomes point to a reverse relationship between the Nusselt number and the internal heat source parameters.

摘要

考虑均相和非均相反应和热辐射效应, 研究了非均匀热源对纳米流体在膨胀板上流动的影响。 用Corcione 关系式描述了纳米流体的动力黏度和有效热导率的关系。根据这个关系式得出, 导热是由 布朗运动进行的。通过相似变换减少了与纳米流体的能量、动量和浓度有关的控制方程, 并进行数值 求解。研究了内热源参数、纳米流体的体积分数、辐射参数、均相反应参数、磁场参数、非均相参数 和Schmidt 数等对热和流体流动的影响。最后, 考虑研究中的有效参数, 改进了Nusselt 数的关系式。 结果表明, 随着非均相参数和均相反应参数的变大, 浓度曲线变稀。结果表明, Nusselt 数与内部热源 参数之间存在反向关系。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAMKHA A J, ISMAEL M A. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu-water nanofluid with an aiding or opposing side wall [J]. Journal of Thermal Science and Engineering Applications, 2016, 8: 031009.

    Article  Google Scholar 

  2. SHEREMET M A, REVNIC C, POP I. Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect [J]. Applied Mathematics and Computation, 2017, 299: 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  3. SHEREMET M A, CIMPEAN D S, POP I. Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis [J]. Applied Thermal Engineering, 2017, 113: 413–418.

    Article  Google Scholar 

  4. TAYEBI T, CHAMKHA A J. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid [J]. Computational Thermal Sciences, 2017, 9: 405–421.

    Article  Google Scholar 

  5. GHASEMI K, SIAVASHI M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls [J]. Journal of Molecular Liquids, 2017, 233: 415–430.

    Article  Google Scholar 

  6. GHASEMI K, SIAVASHI M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios [J]. Journal of Magnetism and Magnetic Materials, 2017, 442: 474–490.

    Article  Google Scholar 

  7. DOGONCHI A S, GANJI D D. Analytical Solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect [J]. Powder Technology, 2017, 318: 390–400.

    Article  Google Scholar 

  8. DOGONCHI A S, GANJI D D. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts [J]. Indian Journal of Physics, 2018, 92: 757–766. DOI: https://doi.org/10.1007/s12648-017-1156-2.

    Article  Google Scholar 

  9. ALSABERY A, ISMAEL M, CHAMKHA A J, HASHIM I. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model [J]. International Journal of Heat and Mass Transfer, 2018, 119: 939–961.

    Article  Google Scholar 

  10. ELLAHI R, HASSAN M, ZEESHAN A. Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection [J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11: 179–186.

    Article  Google Scholar 

  11. RASHIDI M M, VISHNU GANESH N, Abdul Hakeem A K, Ganga B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation [J]. Journal of Molecular Liquids, 2014, 198: 234–238.

    Article  Google Scholar 

  12. BHATTI M M, RASHIDI M M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet [J]. Journal of Molecular Liquids, 2016, 221: 567–573.

    Article  Google Scholar 

  13. DOGONCHI A S, ALIZADEH M, GANJI D D. Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect [J]. Advanced Powder Technology, 2017, 28: 1815–1825.

    Article  Google Scholar 

  14. GHALAMBAZ M, DOOSTANI A, IZADPANAHI E, Chamkha A J. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 72: 104–115.

    Article  Google Scholar 

  15. DOGONCHI A S, GANJI D D. Impact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 52–63.

    Article  Google Scholar 

  16. ABOLBASHARI M H, FREIDOONIMEHR N, NAZARI F, RASHIDI M M. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nanofluid [J]. Powder Technology, 2014, 267: 256–267.

    Article  Google Scholar 

  17. SARI M R, KEZZAR M, ADJABI R. Heat transfer of copper/water nanofluid flow through converging-diverging channel [J]. Journal of Central South University, 2016, 23(2): 484–496.

    Article  Google Scholar 

  18. ZAIB A, BHATTACHARYYA K, SHAFIE S. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid [J]. Journal of Central South University, 2015, 22(12): 4856–4863.

    Article  Google Scholar 

  19. YOUSOFVAND R, DERAKHSHAN S, GHASEMI K, SIAVASHI M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation [J]. International Journal of Mechanical Sciences, 2017, 133: 73–90.

    Article  Google Scholar 

  20. WAQAS M, IJAZ KHAN M, HAYAT T, ALSAEDI A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 324: 640–653.

    Article  MathSciNet  Google Scholar 

  21. HAYAT T, KHALID H, WAQAS M, ALSAEDI A. Numerical simulation for radiative flow of nanoliquid by rotating disk with carbon nanotubes and partial slip [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 341: 397–408.

    Article  MathSciNet  Google Scholar 

  22. HAYAT T, KHALID H, WAQAS M, ALSAEDI A, AYUB M. Homotopic solutions for stagnation point flow of third-grade nanoliquid subject to magnetohydrodynamics [J]. Results in Physics, 2017, 7: 4310–4317.

    Article  Google Scholar 

  23. DOGONCHI A S, DIVSALAR K, GANJI D D. Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 58–76.

    Article  MathSciNet  Google Scholar 

  24. KESHAVARZ MORAVEJI M, BARZEGARIAN R, BAHIRAEI M, BARZEGARIAN M, ALOUEYAN A, WONGWISES S. Numerical evaluation on thermal-hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 671–683. DOI: https://doi.org/10.1007/s10973-018-7181-3.

    Article  Google Scholar 

  25. ALIZADEH M, DOGONCHI A S, GANJI D D. Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field [J]. Case Studies in Thermal Engineering, 2018, 12: 319–332.

    Article  Google Scholar 

  26. ASHFAQ A, NADEEM S. Bio mathematical study of time-dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis [J]. Journal of Central South University, 2017, 24(11): 2725–2744.

    Article  Google Scholar 

  27. SIAVASHI M, JAMALI M. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865.

    Article  Google Scholar 

  28. YANG LIU, DU KAI, ZHANG XIAO-SONG. Influence factors on thermal conductivity of ammonia-water nanofluids [J]. Journal of Central South University, 2012, 19(6): 1622–1628.

    Article  Google Scholar 

  29. DOGONCHI A S, SHEREMET M A, GANJI D D, POP I. Free convection of copper-water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 1171–1184. DOI: https://doi.org/10.1007/s10973-018-7396-3.

    Article  Google Scholar 

  30. DOGONCHI A S, GANJI D D. Study of nanofluid flow and heat transfer between non-parallel stretching walls considering Brownian motion [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69: 1–13.

    Article  Google Scholar 

  31. DOGONCHI A S, GANJI D D. Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation [J]. Journal of Molecular Liquids, 2016, 220: 592–603.

    Article  Google Scholar 

  32. SIAVASHI M, RASAM H, IZADI A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2018. DOI: https://doi.org/10.1007/s10973-018-7540-0.

    Google Scholar 

  33. WAQAS M, HAYAT T, SHEHZAD S A, ALSAEDI A. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms [J]. Physica B: Condensed Matter, 2018, 529: 33–40.

    Article  Google Scholar 

  34. WAQAS M, HAYAT T, ALSAEDI A. A theoretical analysis of SWCNT-MWCNT and H2O nanofluids considering Darcy-Forchheimer relation [J]. Applied Nanoscience, 2018. DOI: https://doi.org/10.1007/s13204-018-0833-6.

    Google Scholar 

  35. DOGONCHI A S, GANJI D D. Investigation of heat transfer for cooling turbine disks with a non-Newtonian fluid flow using DRA [J]. Case Studies in Thermal Engineering, 2015, 6: 40–51.

    Article  Google Scholar 

  36. DOGONCHI A S, CHAMKHA A J, SEYYEDI S M, GANJI D D. Radiative nanofluid flow and heat transfer between parallel disks with penetrable and stretchable walls considering Cattaneo-Christov heat flux model [J]. Heat Transfer-Asian Research, 2018, 47: 735–753. DOI: https://doi.org/10.1002/htj.21339.

    Article  Google Scholar 

  37. DOGONCHI A S, ISMAEL M A, CHAMKHA A J, GANJI D D. Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 3485–3497. DOI: https://doi.org/10.1007/s10973-018-7520-4.

    Article  Google Scholar 

  38. HAYAT T, IMTIAZ M, ALSAEDI A, ALZAHRANI F. Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk [J]. Journal of Molecular Liquids, 2016, 216: 845–855.

    Article  Google Scholar 

  39. KAMESWARAN P K, SHAW S, SIBANDA P, MURTHY PVSN. Homoegenous-heterogenous reactions in a nanofluid flow due to a porous stretching sheet [J]. International Journal of Heat and Mass Transfer, 2013, 57: 465–472.

    Article  Google Scholar 

  40. MERKIN J H. A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow [J]. Mathematical and Computer Modelling, 1996, 24: 125–136.

    Article  MathSciNet  MATH  Google Scholar 

  41. SHEIKH M, ABBAS Z. Homogeneous-heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching/shrinking sheet with uniform suction and slip effects [J]. Ain Shams Engineering Journal, 2017, 8: 467–474.

    Article  Google Scholar 

  42. SAJID M, IQBAL S A, NAVEED M, ABBAS Z. Effect of homogeneous-heterogeneous reactions and magnetohydrodynamics on Fe3O4 nanofluid for the Blasius flow with thermal radiations [J]. Journal of Molecular Liquids, 2017, 233: 115–121. DOI: https://doi.org/10.1016/j.molliq.2017.02.081.

    Article  Google Scholar 

  43. HAYAT T, HUSSAIN Z, ALSAEDI A, MUSTAFA M. Nanofluid flow through a porous space with convective conditions and heterogeneous-homogeneous reactions [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 119–126. DOI: https://doi.org/10.1016/j.jtice.2016.11.002.

    Article  Google Scholar 

  44. BHATTACHARYYA K, MUKHOPADHYAY S, LAYEK G C. MHD boundary layer slip flow and heat transfer over a flat plate [J]. Chinese Physics Letters, 2011, 28: 024701.

    Article  Google Scholar 

  45. ISHAK A. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect [J]. Meccanica, 2010, 45: 367–373.

    Article  MATH  Google Scholar 

  46. MOHAMMADEIN A A, GORLA R S R. Heat transfer in a micropolar fluid over a stretching sheet with viscous dissipation and internal heat generation [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2001, 11: 50–58.

    Article  MATH  Google Scholar 

  47. BHARGAVA R, SHARMA S, TAKHAR H S, BEG O A, BHARGAVA P. Numerical solutions for microplar transport phenomena over a nonlinear stretching sheet [J]. Nonlinear Analysis: Modelling and Control, 2007, 12: 45–63.

    MATH  Google Scholar 

  48. DOGONCHI A S, GANJI D D. Thermal radiation effect on the Nano-fluid buoyancy flow and heat transfer over a stretching sheet considering Brownian motion [J]. Journal of Molecular Liquids, 2016, 223: 521–527.

    Article  Google Scholar 

  49. NARAYANA M, SIBANDA P. Laminar flow of a nanoliquid film over an unsteady stretching sheet [J]. International Journal of Heat and Mass Transfer, 2012, 55: 7552–7560.

    Article  Google Scholar 

  50. CORCIONE M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids [J]. Energy Conversion and Management, 2011, 52: 789–793.

    Article  Google Scholar 

  51. DOGONCHI A S, CHAMKHA A J, GANJI D D. A numerical investigation of magneto-hydrodynamic natural convection of Cu-water nanofluid in a wavy cavity using CVFEM [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135: 2599–2611. DOI: https://doi.org/10.1007/s10973-018-7339-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dogonchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogonchi, A.S., Chamkha, A.J., Hashemi-Tilehnoee, M. et al. Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source. J. Cent. South Univ. 26, 1161–1171 (2019). https://doi.org/10.1007/s11771-019-4078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4078-7

Key words

关键词

Navigation