Skip to main content

Radiation Effect on MHD Convective Flow of Nanofluids over an Exponentially Accelerated Moving Ramped Temperature Plate

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The effect of thermal radiation on magnetohydrodynamic free convective flow of incompressible and viscous nanofluids, which is electrically conducting, over an exponentially accelerated moving ramped temperature plate is studied. The water-based nanofluids which contain the nanoparticles of copper, alumina, and titanium oxide are taken into consideration. The mathematical model of the problem is formulated by applying the nanoparticle volume fraction model. The governing equations for the flow, subjected to the associated conditions, have been solved analytically by Laplace transform method. Expressions of nanofluid velocity, temperature, shear stress, and Nusselt number have been obtained in compact form. Effects of controlling physical parameters on nanofluid velocity and temperature have been displayed using various graphs, whereas, for the engineering perspective, numerical values of shear stress are presented in table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chamkha AJ, Aly AM (2011) MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. Chem Eng Comm 198:425–441

    Article  Google Scholar 

  • Chandran P, Sacheeti NC, Singh AK (2005) Natural convection near a vertical plate with ramped wall temperature. Heat Mass Transfer 41:459–464

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. ASME FED 231/MD 66:99–105

    Google Scholar 

  • Das S, Jana RN, Chamkha AJ (2015) Magnetohydrodynamic free convective boundary layer flow of nanofluids past a porous plate in a rotating frame. J Nanofluids 4:176–186

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. In: Komarneni S, Parker JC, Wollenberger HJ (eds) Nanophase and nanocomposite materials II. Materials Research Society, Pittsburgh

    Google Scholar 

  • Hamad MAA, Pop I (2011) Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid. Heat Mass Transfer 47:1517–1524

    Article  Google Scholar 

  • Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E 65:17–23

    Article  Google Scholar 

  • Hayat T, Muhammad T, Qayyum A, Alsaedi A, Mustafa M (2016) On squeezing flow of nanofluid in the presence of magnetic field effects. J Mol Liq 213:179–185

    Article  Google Scholar 

  • Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. ASME J Heat Transfer 129:617–623

    Article  Google Scholar 

  • Kang Ki JYT, Choi CK (2004) Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids 16:2395–2401

    Article  MATH  Google Scholar 

  • Khalid A, Khan I, Shafie S (2015) Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur Phys J Plus 130:57

    Article  Google Scholar 

  • Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29(5):1326–1336

    Article  Google Scholar 

  • Rashidi MM, Ganesh NV, Abdul Hakeem AK, Ganga B (2014) Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J Mol Liq 198:234–238

    Article  Google Scholar 

  • Seth GS, Ansari MS, Nandkeolyar R (2011) MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. Heat Mass transfer 47:551–561

    Article  Google Scholar 

  • Seth GS, Nandkeolyar R, Ansari MS (2013) Effects of thermal radiation and rotation on unsteady hydromagnetic free convection flow past an impulsively moving vertical plate with ramped temperature in a porous medium. J Appl Fluid Mech 6(1):27–38

    Google Scholar 

  • Seth GS, Hussain SM, Sarkar S (2014) Hydromagnetic natural convection flow with radiative heat transfer past an accelerated moving vertical plate with ramped temperature through a porous medium. J Porous Media 17(1):67–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hussain .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} f_{1} \left( {c_{1} ,c_{2} ,c_{3} ,c_{4} ,c_{5} } \right) & = \left\{ {\frac{1}{{c_{4} }} + \left( {c_{5} + \frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{3} }}} } \right)} \right\}{\text{e}}^{{c_{1} \sqrt {c_{2} c_{3} } }} {\text{erfc}}\left( {\frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{5} }}} + \sqrt {c_{3} c_{5} } } \right) \\ & \quad + \left\{ {\frac{1}{{c_{4} }} + \left( {c_{5} - \frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{3} }}} } \right)} \right\}{\text{e}}^{{ - c_{1} \sqrt {c_{2} c_{3} } }} {\text{erfc}}\left( {\frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{5} }}} - \sqrt {c_{3} c_{5} } } \right), \\ \end{aligned}$$
$$\begin{aligned} f_{2} \left( {c_{1} ,c_{2} ,c_{3} ,c_{4} ,c_{5} } \right) & = {\text{e}}^{{c_{1} \sqrt {c_{2} \left( {c_{3} + c_{4} } \right)} }} {\text{erfc}}\left( {\frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{5} }}} + \sqrt {\left( {c_{3} + c_{4} } \right)c_{5} } } \right) \\ & \quad + {\text{e}}^{{ - c_{1} \sqrt {c_{2} \left( {c_{3} + c_{4} } \right)} }} {\text{erfc}}\left( {\frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{5} }}} - \sqrt {\left( {c_{3} + c_{4} } \right)c_{5} } } \right), \\ \end{aligned}$$
$$\begin{aligned} f_{3} \left( {c_{1} ,c_{2} ,c_{3} ,c_{4} } \right) & = \left\{ {\frac{1}{{c_{3} }} + \left( {c_{4} + \frac{{c_{2} c_{1}^{2} }}{2}} \right)} \right\}{\text{erfc}}\left( {\frac{{c_{1} }}{2}\sqrt {\frac{{c_{2} }}{{c_{4} }}} } \right) \\ & \quad - c_{1} \sqrt {\frac{{c_{2} c_{4} }}{\pi }} {\text{e}}^{{ - (c_{2} c_{1}^{2} )/(4c_{4} )}} , \\ \end{aligned}$$
$$f_{4} \left( {c_{1} ,c_{2} ,c_{3} } \right) = \left( {\sqrt {\frac{{c_{1} }}{{c_{2} }}} + 2c_{3} \sqrt {c_{1} c_{2} } } \right)\left\{ {{\text{erfc}}\left( {\sqrt {c_{2} c_{3} } } \right) - 1} \right\} - 2\sqrt {\frac{{c_{1} c_{3} }}{\pi }} {\text{e}}^{{ - c_{2} c_{3} }} ,$$
$$\begin{aligned} f_{5} \left( {c_{1} ,c_{2} ,c_{3} ,c_{4} } \right) & = \sqrt {c_{1} \left( {c_{2} + c_{3} } \right)} \left\{ {{\text{erfc}}\left( {\sqrt {\left( {c_{2} + c_{3} } \right)c_{4} } } \right) - 1} \right\} \\ & \quad - \sqrt {\frac{{c_{1} }}{{\pi c_{4} }}} {\text{e}}^{{ - \left( {c_{2} + c_{3} } \right)c_{4} }} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussain, S.M., Joshi, H.J., Seth, G.S. (2018). Radiation Effect on MHD Convective Flow of Nanofluids over an Exponentially Accelerated Moving Ramped Temperature Plate. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics