Skip to main content
Log in

L1 adaptive controller of nonlinear reference system in presence of unmatched uncertainties

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

An extension of L1 adaptive control is proposed for the unmatched uncertain nonlinear system with the nonlinear reference system that defines the performance specifications. The control law adapts fast and tracks the reference system with the guaranteed robustness and transient performance in the presence of unmatched uncertainties. The interval analysis is used to build the quasi-linear parameter-varying model of unmatched nonlinear system, and the robust stability of the proposed controller is addressed by sum of squares programming. The transient performance analysis shows that within the limit of hardware a large adaption gain can improve the asymptotic tracking performance. Simulation results are provided to demonstrate the theoretical findings of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SU Shan-wei, LIN Yan. Robust output tracking control for a velocity-sensorless vertical take-off and landing aircraft with input disturbances and unmatched uncertainties [J]. International Journal of Robust and Nonlinear Control 2013, 23(11): 1198–1213.

    Article  MathSciNet  MATH  Google Scholar 

  2. LEMAN T, XARGAY E, DULLERUD G, HOVAKIMYAN N, WENDEL T. L1 adaptive control augmentation system for the X-48B aircraft [C]// AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois: AIAA 2009, DOI: 10.2514/6.2009-5619.

    Google Scholar 

  3. LI Yong-ming, TONG Shao-cheng, LI Tie-shan. Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot [J]. Nonlinear Dynamics 2012, 70(3): 2035–2048.

    Article  MathSciNet  MATH  Google Scholar 

  4. HOU Ming-zhe, LIANG Xiao-ling, DUAN Guang-ren. Adaptive block dynamic surface control for integrated missile guidance and autopilot [J]. Chinese Journal of Aeronautics 2013, 26(3): 741–750.

    Article  Google Scholar 

  5. KWAN C M. Sliding mode control of linear systems with mismatched uncertainties [J]. Automatica 1995, 31(2): 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  6. LI Yong-ming, TONG Shao-cheng, LI Tie-shan. Adaptive fuzzy backstepping control of static var compensator based on state observer [J]. Nonlinear Dynamics 2013, 73(1/2): 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  7. SLOTINE J J, LI Wei-ping. Applied nonlinear control [M]. New Jersey: Prentice Hall, 1991.

    MATH  Google Scholar 

  8. LI Jin-hui, LI Jie, YU Pei-chang, WANG Lian-chun. Adaptive backstepping control for levitation system with load uncertainties and external disturbances [J]. Journal of Central South University 2014, 21(12): 4478–4488.

    Article  Google Scholar 

  9. XIONG Gen-liang, XIE Zong-wu, HUANG Jian-bin, LIU Hong, JIANG Zai-nan, SUN Kui. Dynamic surface control-backstepping based impedance control for 5-DOF flexible joint robots [J]. Journal of Central South University of Technology 2010, 17(4): 807–815.

    Article  Google Scholar 

  10. XU Yin-yin, TONG Shao-cheng, LI Yong-ming. Adaptive fuzzy fault-tolerant control of static var compensator based on dynamic surface control technique [J]. Nonlinear Dynamics 2013, 73(3): 2013–2023.

    Article  MathSciNet  Google Scholar 

  11. MOBAYEN S, MAJD V J. Robust tracking control method based on composite nonlinear feedback technique for linear systems with time-varying uncertain parameters and disturbances [J]. Nonlinear Dynamics 2012, 70(1): 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  12. BARKANA I. Gain conditions and convergence of simple adaptive control [J]. International Journal of Adaptive Control and Signal Processing 2005, 19(1): 13–40.

    Article  MATH  Google Scholar 

  13. SOBEL K, KAUFMAN H, MABIUS L. Implicit adaptive control for a class of MIMO systems [J]. IEEE Transactions on Aerospace and Electronic Systems 1982, AES-18(5): 576–590.

    Google Scholar 

  14. ULRICH S, SASIADEK J Z, BARKANA I. Modeling and direct adaptive control of a flexible-joint manipulator [J]. Journal of Guidance, Control, and Dynamics 2012, 35(1): 25–39.

    Article  Google Scholar 

  15. FRADKOV A L, ANDRIEVSKY B, PEAUCELLE D. Adaptive control design and experiments for LAAS “helicopter” benchmark [J]. European Journal of Control 2008, 14(4): 329–339.

    Article  MathSciNet  MATH  Google Scholar 

  16. CAO Cheng-yu, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, Part I: Control signal and asymptotic stability [C]// American Control Conference. Minneapolis, Minnesota: IEEE 2006: 3397–3402.

    Google Scholar 

  17. CAO Cheng-yu, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, Part II: Guaranteed transient performance [C]// American Control Conference. Minneapolis, Minnesota: IEEE 2006: 3403–3408.

    Google Scholar 

  18. ERDOS D, SHIMA T, KHARISOV E, HOVAKIMYAN N. L1 adaptive control integrated missile autopilot and guidance [C]// AIAA Guidance, Navigation, and Control Conference. Minneapolis, Minnesota: AIAA 2012, DOI: 10.2514/6.2012-4465.

    Google Scholar 

  19. MALLIKARJUNAN S, BILL N, KHARISOV E, XARGAY E, HOVAKIMYAN N, CAO Cheng-yu. L1 adaptive controller for attitude control of multirotors [C]// AIAA Guidance, Navigation, and Control Conference. Minneapolis, Minnesota: AIAA 2012, DOI: 10.2514/6.2012-4831.

    Google Scholar 

  20. WANG Xiao-feng, HOVAKIMYAN N. L1 adaptive controller for nonlinear time-varying reference systems [J]. Systems & Control Letters 2012, 61(4): 455–463.

    Article  MathSciNet  MATH  Google Scholar 

  21. LUO Jie, CAO Cheng-yu, YANG Qin-min. L1 adaptive controller for a class of non-affine multi-input multi-output nonlinear systems [J]. International Journal of Control 2013, 86(2): 348–359.

    Article  MathSciNet  MATH  Google Scholar 

  22. LEE K W, SINGH S N. Multi-input submarine control via L1 adaptive feedback despite uncertainties [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 2014, 228(5): 330–347.

    Google Scholar 

  23. CAO Cheng-yu, HOVAKIMYAN N. L1 adaptive controller for multi-input multi-output systems in the presence of unmatched disturbances [C]// American Control Conference. Washington, USA: IEEE 2008: 4105–4110.

    Google Scholar 

  24. XARGAY E, HOVAKIMYAN N, CAO Cheng-yu. L1 adaptive controller for multi-input multi-output systems in the presence of nonlinear unmatched uncertainties[C]// American Control Conference. MD, USA: IEEE 2010: 874–879.

    Google Scholar 

  25. YOO S J, HOVAKIMYAN N, CAO Cheng-yu. Decentralised L1 adaptive control for large-scale non-linear systems with interconnected unmodelled dynamics [J]. IET Control Theory & Applications 2010, 4(10): 1972–1988.

    Article  MathSciNet  Google Scholar 

  26. PETERSON A, ÅSTROM K, ROBERTSSON A, JOHANSSON R. Augmenting L1 adaptive control of piecewise constant type to a fighter aircraft. Performance and robustness evaluation for rapid maneuvering [C]// AIAA Guidance, Navigation, and Control Conference. Minneapolis, Minnesota: AIAA 2012.

    Google Scholar 

  27. HANSEN E R. Global optimization using interval analysis [M]. New York: CRC Press Inc, 2004.

    MATH  Google Scholar 

  28. RAISSI T, VIDEAU G, ZOLGHADRI A. Interval observer design for consistency checks of nonlinear continuous-time systems [J]. Automatica 2010, 46(3): 518–527.

    Article  MathSciNet  MATH  Google Scholar 

  29. ANDERSON J, PAPACHRISTODOULOU A. Robust nonlinear stability and performance analysis of an F/A-18 aircraft model using sum of squares programming [J]. International Journal of Robust and Nonlinear Control 2013, 23(10): 1099–1114.

    Article  MathSciNet  MATH  Google Scholar 

  30. ANDERSON J, PAPACHRISTODOULOU A. A decomposition technique for nonlinear dynamical system analysis [J]. IEEE Transactions on Automatic Control 2012, 57(6): 1516–1521.

    Article  MathSciNet  Google Scholar 

  31. TAO G. A simple alternative to the Barbalat lemma [J]. IEEE Transactions on Automatic Control 1997, 42(5): 698.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-tao Song  (宋海涛).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Ht., Zhang, T. & Zhang, Gl. L1 adaptive controller of nonlinear reference system in presence of unmatched uncertainties. J. Cent. South Univ. 23, 834–840 (2016). https://doi.org/10.1007/s11771-016-3130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3130-0

Key words

Navigation